
During the summer of  2008, 
Dustin Phan held an internship 
with the Wiseman Research 
Group in Los Angeles. During 
that time, he learned about 
the clinical trial process for 
developing FDA approved 
vaccines and developed an 
interest in cancer. When he 
came back to school that Fall, 
Dustin was fortunate enough 
to find Dr. John S. Lowengrub 
working on mathematical can-
cer modeling. He worked with 
Dr. Lowengrub in develop-
ing and analyzing a discrete 
mathematical model of  solid 
tumor growth called a cellu-
lar automaton model. Dustin 
was accepted into the UCI 
Mathematical, Computation, 
and Systems Biology graduate 
program, allowing him to con-
tinue research in both fields 
after graduation. Cancer cells compete with each other and host cells in a fast paced 

evolutionary system. Typically, mutations are introduced into the 
genome of  cancer cells, and it is important to understand what 
types of  mutations ensure that one mutant is more fit than another 
and is also more fit than the host cells. This work uses a mathemati-
cal model that tracks the motion and interaction of  discrete cells. 
The results demonstrate that there is a nontrivial trade-off  between 
migration and proliferation. This can have profound implications 

for traditional cancer treatment, which typically only targets highly proliferative cells. 
Being involved in state-of-the-art research, such as described in this paper, provides 
undergraduates with a unique opportunity to bridge classroom mathematics experi-
ence and knowledge with real world applications.
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Tumor growth is a complex biological process often studied through the use of  
both in vivo and in vitro experimentation. Mathematical models provide a com-

plementary approach by using a controlled environment in which a system can be 
described quantitatively. This can also yield prognostic data after thorough analysis 
by the modeler. In an effort to study the characteristics that increase cell fitness, this 
paper presents a discrete cellular automaton model that uses computer simulation to 
describe the invasion of  healthy tissue by cancer cells. A mechanistic approach is used 
in which the proliferation, migration, and death of  cells is controlled through preset 
parameters. Values can be adjusted and corresponding simulations can be analyzed. 
During simulation, cells with high migration probabilities create morphologies with 
considerably less population density than those with low migration probabilities, 
thereby creating space into which other cells may proliferate or migrate. Furthermore, 
these highly migratory cells display greater rates of  population growth compared to 
less migratory cells with the same proliferation rate. The model also shows that 
tumor cell invasion times can decrease even when increasing only the cells’ tendency 
to migrate. Results show that the population growth rate of  non-migratory cells may 
be achieved by cells with smaller proliferation rates but larger migration rates.
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Introduct ion

Tumor growth and development is a complex biological 
process typically beginning with genetic mutations within 
a single cell. Genetic irregularities typically affect two basic 
types of  genes: oncogenes and tumor suppressor genes. 
In healthy cells, oncogenes are responsible for producing 
hormones promoting mitosis, the regulated proliferation of  
cells. As a result, when oncogenes mutate or become over 
expressed, cells begin to proliferate regardless of  the pres-
ence of  hormones, resulting in uncontrolled growth (Croce, 
2008). Tumor suppressor genes, however, are responsible 
for the regulation of  the cell cycle and apoptosis. When cells 
become damaged or mutated, these genes arrest the pro-
gression of  the cell cycle in order to carry out DNA repair 
or to induce apoptosis, that is, programmed cellular death 
(Sheer, 2004). This is designed to prevent any further muta-
tions from being passed on to daughter cells. Therefore, 
any mutations in tumor suppressor genes causing loss of  
function may allow cells to avoid apoptosis and enable the 
propagation of  mutations and damaged DNA to daughter 
cells (Barnes et al., 1993).

This paper seeks to investigate the characteristics making 
certain cells more fit than others in a highly competitive 
environment where success is determined by the cell’s abil-
ity to propagate genetic material. The model presented in 
this paper focuses on two types of  phenotypic changes. The 
first is associated with proliferation, in which the activation 
of  oncogenes and inactivation of  tumor suppressor genes 
lead to uncontrolled growth. The second type of  mutation, 
however, affects cell motility. For instance, genes associated 
with cell motility in solid tumors have also been associated 
with metastasis, a crucial step in tumor development (Fidler, 
1989). While proliferative cells continue to divide only so 
long as spatial and nutrient restrictions allow, motile cells 
can break away from the primary tumor and access new 
nutrient sources, leading to the development of  secondary 
tumors at new sites in the body (Sahai, 2007). Therefore, 
studying the cellular characteristics leading to increased fit-
ness is an important step toward understanding solid tumor 
development.

In studying tumor development, both in vitro and in vivo 
experimentation have been used extensively. In vivo studies 
typically allow researchers to perform studies on a living 
organism. The large number of  biological variables in in 
vivo studies, however, makes it difficult for researchers to 
precisely identify all the processes involved. In vitro experi-
mentation, alternatively, allows experimenters to create 
controlled studies of  specific systems with fewer outside 

variables. However, in vitro studies often do not reflect the 
reality of  tumor development, and typically must be fol-
lowed by in vivo testing in order to observe the overall effects 
of  an experiment on a living organism.

Another means of  studying biological mechanisms is 
through the use of  mathematical and computational mod-
els. Mathematical models often yield important diagnostic 
as well as prognostic data (Quaranta et al., 2008; Drasdo 
and Hohme, 2007), while computational models provide a 
precisely controlled environment in which the evolution of  
a system may be analyzed quantitatively. Simulations allow 
researchers to test conditions that are difficult to obtain 
through in vitro or in vivo experimentation, and can often rule 
out particular mechanisms as an explanation for experimen-
tal observations (Fall et al., 2002).

In the past, population models such as the Gompertzian, the 
Bertalanffy, the exponential, and the logistic models have all 
been proposed as possible representations for the growth 
of  solid tumors (Vinayg and Frank, 1982). However, each 
of  these mathematical models describes only the overall 
increase in the number of  tumor cells through population 
dynamics, and does not distinguish among detailed cellular 
processes, thus limiting the predictive capability. Another 
approach to the mathematical modeling of  tumors is the 
use of  deterministic partial differential equations to model 
processes such as the growth, differentiation, diffusion, and 
mutations of  tumor cells (Wodarz and Komarova, 2005). 
Examples include reaction-diffusion equations, which are 
used to model the spatial spread of  tumors and the chemi-
cal reactions involved (Ward and King, 1999; Gatenby and 
Gawlinski, 1996), or the continuum mechanics models, 
which treat tumors as a collection of  tissue while also con-
sidering physical forces and pressure between cells (Tracqui, 
1995; Greenspan, 1976). These types of  models often 
describe the tumor as a whole, and are unable to capture the 
stochastic nature of  tumors at the cellular and sub-cellular 
levels (Anderson et al., 2005).

This study uses a different type of  model for tumor growth: 
the discrete cellular automaton model. In cellular automaton 
models, a spatial grid is first used to represent a host tissue, 
whereupon “cells” can be placed within the grid to repre-
sent invading tumor cells. Then, through the use of  sto-
chastic interaction rules based on biological processes (e.g. 
cell cycle, mitosis), tumor growth patterns can be simulated. 
Thus, cellular automaton models are capable of  describ-
ing tumors at the cellular level, while still capturing the 
stochastic nature of  cell behavior (Deutsch and Dormann, 
2005; Anderson et al., 2005). The model presented here is 
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different from much of  the recent literature in which many 
biological processes and intricacies are modeled using cel-
lular automata. Smolle and Stettner, for example, present a 
cellular automaton model in which autocrine and paracrine 
growth factors influence cell division, migration, and death, 
resulting in varying morphological patterns (1993). Gerlee 
and Anderson, in contrast, present a model investigating 
the impact of  the micro-environment on the appearance of  
motile phenotypes, showing that tumors growing in harsh 
micro-environments are more likely to contain aggressive 
invasive phenotypes (2009), while Kansal et al. develops a 
complex three-dimensional cellular automaton describing 
brain tumors (2000). This paper, on the other hand, pres-
ents a mathematical model of  tumor growth focusing on 
only two forces, proliferation and migration, and how they 
trade off  to influence the overall fitness of  cells. While the 
model presented here is simpler, it is unique in that the deci-
sion to proliferate requires multiple signals during which the 
cell may still migrate, creating a more realistic representation 
of  cell dynamics. This provides insight that can then be car-
ried over to more complex models.

Mathematical  Model

Tissue Model
The host tissue is represented by a two-dimensional matrix 
containing n x n lattice sites. Each lattice site carries a value 
of  0 or 1, where 0 represents open space into which tumor 
cells can invade and 1 denotes a site occupied by a tumor 
cell. Time is measured in the number of  evolution steps.

Possible Cell Actions
At the start of  each time step, a tumor cell either dies or 
survives. Cells that survive carry out one of  three possible 
actions: proliferation, migration, or quiescence. Parameters 
governing cell mechanisms at each time step are defined in 
Table 1.

Cell Survival and Death. For simplicity, each tumor cell has an 
equal probability of  surviving or dying, with the probabili-
ties of  survival and death given by Ps and Pd, respectively, 
where:

Ps + Pd = 1 (1)

To determine the course of  action for each tumor cell, a 
uniformly distributed random number  0 ≤ rr ≤ 1 is gener-
ated and compared against the parameter Ps. If  rr < Ps, the 
cell will survive and will continue to migrate, proliferate, or 
quiesce during its next time step. However, if  rr ≥ Ps, the 
respective tumor cell will die. In this case, the lattice site 
previously occupied and set to 1 will empty and change to 
0, creating an empty site, which allows other tumor cells to 
occupy it through migration or proliferation.

Cell Proliferation. Initially, PH=0. Cell proliferation is simulat-
ed by first generating a uniformly distributed random num-
ber 0 ≤ rrp ≤ 1. For rrp ≥ Pp no proliferation is performed, 
and the model continues to test for the possibility of  migra-
tion as shown in the following section. When rrp < Pp one 
proliferation signal is obtained; that is,

PH := PH + 1 (2)

The process is repeated until the total number of  prolifera-
tions signals PH = NP, then the tumor cell will proceed to 
proliferate. However, if  PH < NP then the cell may migrate 
without proliferating, as seen in the flowchart (Figure 
2). Proliferation is simulated using the system shown in 
Equation 3 to determine the direction of  proliferation 
(Figure 1). First, a uniformly distributed random num-
ber rr is selected. If  0 ≤ rr ≤ P1 , then the site chosen for 
proliferation is ηi-1, j. For P1 < rr ≤ P1 + P2, ηi+1, j is chosen. 
If  P1 + P2 < rr ≤ P1 + P2 + P3, ηi, j-1 is chosen. Finally, for 
P1 + P2 + P3 < rr ≤ 1, ηi, j+1 is chosen for proliferation. Once 
an empty site is chosen, the value of  the original cell ηi, j = 1, 
and the position occupied by the daughter cell changes from 
0 to 1. Thus the proliferating cell ηi, j maintains its original 
position while its daughter cell occupies the chosen lattice 
adjacent site. Then PH = 0 for both the daughter cell and 
the original cell.

Table 1
Definition of Model Parameters.

Ps Probability of cell survival.

Pd Probability of cell death.

Pm Probability of cell migration.

Pp Probability of cell proliferation.

Pq Probability of cell quiescence.

rr Random value to determine survival.

rrm Random value to determine migration.

rrp Random value to determine proliferation.

PH Number of proliferation signals.

NP Total PH needed to proliferate.

Figure 1
The current position of the cell is denoted 
by ηi, j. Possible directions of migration are 
given by the four adjacent quadrants.

ηi-1, j ηi, j ηi+1, j

ηi, j-1

ηi, j +1
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The probability of  proliferating or migrating into each of  
the adjacent lattice sites is given by:

P(ηi-1, j ) = = P1

1-ηi-1, j

4 – (ηi+1, j + ηi-1, j + ηi, j +1 + ηi, j-1 )

P(ηi+1, j ) = = P2

1-ηi+1, j

4 – (ηi+1, j + ηi-1, j + ηi, j +1 + ηi, j-1 )

P(ηi, j-1 ) = = P3

1-ηi, j-1

4 – (ηi+1, j + ηi-1, j + ηi, j +1 + ηi, j-1 )

P(ηi, j+1 ) = = P4

1-ηi, j+1

4 – (ηi+1, j + ηi-1, j + ηi, j +1 + ηi, j-1 )

(3)

Cell Migration. After the survival of  a tumor cell has been 
determined, cell migration is simulated by choosing a uni-
formly distributed random number 0 ≤ rrm ≤ 1 and compar-

ing it with Pm. For values rrm ≥ Pm, 
the cell will quiesce and no other 
action will be undertaken until the 
next time step. For rrm < Pm, the 
cell may migrate. To determine the 
direction of  migration, suppose the 
current position of  the tumor cell 
is given by ηi, j; the current value of  
this lattice site is 1. The cell can then 
migrate into each of  four coordi-
nate directions, through the process 
described in the previous section, as 
long as the respective lattice sites are 
empty.

The probability of  migrating into 
a specified lattice site is weight-
ed by the number of  empty sites. 
Consequently, when all adjacent lat-
tice sites are empty, the probabil-
ity of  migrating into each is 0.25, 
whereas when all adjacent lattice 
sites are occupied, there is no migra-
tion and the cell will quiesce. Once 
migration direction probabilities 
have been calculated and an empty 
lattice site has been chosen, the 
cell vacates its original position and 
occupies its neighboring site. That is, 
ηi, j changes from 1 to 0 and the state 
of  the new position changes from 0 
to 1. For cases where each neighbor-
ing site is occupied by a tumor cell 
and its lattice is denoted by 1, the cell 

will quiesce and no other actions will be performed. Note 
that cell migration is periodic. That is, if  cells migrate from 
the edge and the leave simulated space they will return on 
the other side.

Cell Quiescence. Cell quiescence occurs when a tumor cell 
neither proliferates nor migrates. Thus, when Pp + Pm < 1 
then the probability of  quiescence is given by (4).

Pq = 1 – Pm – Pp (4)

Since Pp and Pm are independent, it is possible that their 
sum exceeds 1. For Pp + Pm ≥ 1, quiescence can only occur 
in a living tumor cell when the lack of  space prevents pro-
liferation or migration from occurring.

Update Cell Positions

No

YesYes

Yes

Yes

Yes

No

No

Initial
conditions Cell Dies

No

No
rrm < Pm?PH ≥ NP?

NoBegin
Time Step rr < Ps?

Cell
Survivesrrp < Pp ?+1 PH

Quiescent

Calculate Proliferation
Probabilities

Calculate Migration
Probabilities

Migration?Proliferation?

Yes

Figure 2
Simulation flowchart of mathematical model. Parameters defined as in Table 1.
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Results

General Simulation Procedures
Simulation was conducted in a 
domain containing 32 x 32 lattice 
sites. Results were collected for both 
NP=1 and NP=2. Because the simu-
lation models a stochastic process, 
100 simulations were performed for 
each set of  parameters. Simulation 
and computations were performed 
in MATLAB.

Tumor Growth Patterns
Figure 3 shows several sample simu-
lation results demonstrating the spa-
tiotemporal distributions of  cells 
starting from a single cell. In each 
case, the probability of  prolifera-
tion Pp=0.25. In the simulations, NP 
and Pm are varied. Note that for 
a fixed NP, a lower probability of  
migration allows patterns with more 
densely packed cells, while large 
migration probabilities are associated 
with less densely packed cell clusters. 
Specifically, Figures 3a and 3b have 
NP=1, whereas Figures 3c and 3d 
have NP=2. Large migration proba-
bilities are associated with a large rate 
of  growth of  the cell population. 
This can be attributed to the fact 
that higher cell motility allows tumor 
cells to migrate into open spaces and 
increase opportunities for proliferation. Comparing Figures 
3a and 3b with Figures 3c and 3d also shows that NP sig-
nificantly affects the evolution of  the cell population. That 
is, simulations with NP=2 are associated with a lower rate of  
proliferation, leading to slower growth of  cell population 
compared with the NP=1 simulations.

Population Growth
In Figure 4, the cell population is plotted as a function of  
time by counting the number of  cells at each time evolu-
tion. The mean cell population generated by the model is 
given by the green curve; blue error bars denote the stan-
dard deviation for the 100 simulations performed for each 
parameter set. For a fixed value of  NP, simulations with 
Pm=0.8 (Figs 4b and 4d), demonstrate significantly faster 
growth before stabilizing compared to those with Pm=0.2 
(Figures 4a and 4c). For Ps=1, the final population always 

totals 1024 because the maximum capacity of  the grid is 32 
x 32. Thus, more migratory cells have faster growth rates, 
even when proliferation rates remain unchanged. Increasing 
NP, (Figures 4c and 4d) retards growth due to the increased 
number of  proliferation hits required for a cell to prolif-
erate. In addition, the standard deviation increases as NP 
increases, indicating more variable results. Increasing migra-
tion rates also increases variability (Figure 4).

Growth rates are determined using a least squares logistic 
fit to Equation 5 using a method as described by Cavallini 
(Cavallini, 1993). The logistic growth fit of  each simulation 
is given by the red curve (Figure 4).

dP
dt

P
K= rP 1 – )( (5)

Figure 3
Tumor growth patterns from computer simulation at time iterations 5, 15, 25, and 35. For all 
four cases, Ps = 1 and Pp = 0.25. Specific parameters for each of the cases are as follows: (a). 
NP = 1, Pm = 0.2. (b). NP = 1, Pm = 0.8. (c). NP = 2, Pm = 0.2. (d). NP = 2, Pm = 0.8.
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Specifically, r is the growth rate and K = 1024 is the carrying 
capacity. In (Figure 4a) r = 0.135, in (Figure 4b) r = 0.2167, 
in (Figure 4c) r = 0.0631, and in (Figure 4d) r = 0.0972. 
Note that increasing NP from 1 to 2 roughly halves the 
growth rate. Also, the logistic fit is slightly better for larger 
Pm because in the logistic model, all cells should prolifer-
ate. This is better approximated by large Pm since there is 
generally more space available to cells than with smaller Pm 
(Figures 8 and 9).

Invasion Time
The number of  time steps until each lattice site in the host 
tissue is occupied by a tumor cell is defined as the invasion 
time. In Figure 5, the invasion time is plotted as a function 
of  Pm for different Pp. By increasing the probability of  
proliferation Pp of  tumor cells, the time required to invade 
the host tissue falls dramatically because the cells proliferate 
more frequently. Also note that by fixing Pp and increasing 
the probability of  migration Pm, the invasion time decreases 
significantly as well, although the effect is more dramatic for 
small Pp. Behavior for both the NP = 1 and NP = 2 models 
is quantitatively similar, but note the increased invasion time 
for the NP = 2 model (Figure 5b). However, when NP = 2 the 

invasion times tend to saturate for large enough Pm. Least 
squared fits were calculated for each of  the curves in Figure 
5. A bisection method was used to calculate Pm values for 
each Pp curve corresponding to the same invasion time. 
This allows the probability of  proliferation Pp to be plotted 
as a function of  probability of  migration Pm such that the 
combination yields the same invasion time (Figure 6).

When NP = 1 (Figure 6a) the graphs are monotone decreas-
ing, indicating that the probability of  proliferation to invade 
at a particular time decreases as the probability of  migration 
increases. Thus, tumor cells with low proliferation rates 
and high migration rates yield the same invasion times as 
those with higher proliferation rates but lower migration 
rates. When NP = 2, there appears to be a critical invasion 
time T* above which the dependence of  Pp upon Pm for 
equal invasion time is non-monotone (Figure 6b). In par-
ticular, for invasion times Tinv < T*inv , Pp is a monotonically 
decreasing function of  Pm. However, for Tinv ≥ T*inv there 
appears to be a critical Pm* that minimizes Pp for a given 
invasion time. When Pm < Pm*, probability of  proliferation 
Pp for a given invasion time is a decreasing function of  Pm. 
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Figure 4
Population as a function of time. Population: [0,1024]. Time: [0,225]. For all four cases, Pp = 0.25 and Ps = 1. Green Curve: generated by model. 
Red Curve: Logistic Growth Fit. Blue Lines: Standard deviation of data. Parameters are as follows: (a). NP = 1, Pm = 0.2, growth rate = 0.1350 
(b). NP = 1, Pm = 0.8, growth rate = 0.2167. (c). NP = 2, Pm = 0.2, growth rate = 0.0631. (d). NP = 2, Pm = 0.8, growth rate = 0.0972.
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However, for Pm ≥ Pm*, a large Pp is required for the same 
invasion time.

Non-Monotonic Behavior. When NP=2 and Pp is small (i.e. 
Pp < 0.1), the invasion time may exhibit a non-monotone 
dependence on Pm (Figure 7). This gives rise to the non-

monotonicity observed in Figure 6. To study this behavior, 
let NC* be the cells with the necessary space to migrate or 
proliferate, and let NC be the total number of  cells on the 
lattice. Then NCratio is defined to be:

NCratio = NC*

NC
(6)

Thus, if  NCratio = 1, all cells have the capacity to migrate or 
proliferate. By plotting NCratio as a function of  time, one 
sees that NCratio decreases more slowly when the prob-
ability of  migration Pm is larger (Figure 8). However, when 
Pm is large, there is more variability as described previously. 
That is, the number of  cells with space NC* and the total 
number of  cells NC are equal for more time steps. This is 
largely due to the loosely packed morphologies in the early 
time steps attributed to higher migration rates. Note that for 
Figures 8 and 9, although NCratio and NC* should fall to 0 
for each of  the individual cases, the variation in values may 
cause the mean to shift away from 0.
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Figure 5
Invasion Time as a function of Pm for fixed Pp. y-Axis: Invasion Time. x-Axis: Pm. Pm: [0, 0.975]. Step size 0.025. Parameters: (a). NP = 1, 
Ps = 1. (b). NP=2, Ps = 1.
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Figure 7
Invasion Time as a function of Pm for fixed Pp. y-Axis: Invasion 
Time. x-Axis: Pm. Pm: [0, 0.975]. Step size 0.025. Parameters: 
NP = 2, Ps = 1.
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While the decay in Figure 8a shows a smooth decrease, 
Figure 8b with Pm = 0.9 displays a more variable decrease. 
Plotting the number of  cells with space NC* as a function 
of  time shows that this inconsistent decrease corresponds 
to fluctuating values of  NC* during the same time intervals 
(Figure 9). When Pm = 0.1, the plot in Figure 9a shows that 
there is a gradual increase in the number of  cells with space 
until the environment and the surrounding cells begin to 
limit proliferation. Thus, there is a single maximum of  NC* 
at a particular time. However, when Pm = 0.9, the plot in 
Figure 9b shows that the values of  NC* fluctuate over time. 
Note that the maximum NC* for Pm = 0.9 is less than that 
of  Pm = 0.1, roughly by a factor of  one half  . This indicates 
that for Pp = 0.05, the number of  cells with space to prolif-
erate or migrate is lower for larger migration probabilities 
than smaller migration probabilities since more rapid migra-
tion causes cells to cluster more frequently leading to an 
increased invasion time. This is the source of  non-monoto-
nicity observed in Figures 6 and 7.

Discussion

The effects of  proliferation rates on tumor growth and 
development have long been understood—high prolifera-
tion rates result in short invasion times. That is, when tumor 
cell dynamics are limited only to proliferation, the most 
favorable strategy for a cell is to proliferate whenever there 
is space (Gerlee and Anderson 2007, 2009). However, little 
work has been done in studying the effects of  cell migra-
tion on tumor development. While immobile cells must 
proliferate in order to invade, the most efficient strategy for 
invasion is no longer clear when motility is a factor. The 
generally accepted “Go-or-Grow” hypothesis also suggests 
that tumor cells are incapable of  moving and proliferat-
ing simultaneously, creating a dynamic in which cells can 
either migrate to find additional nutrient sources, thereby 
increasing survivability, or remain stationary and spread 
their genetic material (Giese et al., 2003). By adopting this 
same principle (Figure 2), simulation results from the model 
showed that high motility cells typically had faster invasion 
times than those that were predominantly proliferative. This 
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NCratio as a function of Time. y-Axis: NCratio. x-Axis: Time. Parameters: NP = 2, Ps = 1. (a) Pp = 0.05, Pm = 0.1 (b). Pp = 0.05, Pm = 0.9.
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suggests that migratory cells were more capable of  acquir-
ing the space necessary to proliferate freely. Also, by keep-
ing migration rates high, cells on the outer rim were able to 
create the necessary space for cells on the inner regions to 
continue proliferating, thus reducing quiescence and allow-
ing more cells to remain active. These high motility cells tend 
to create morphologies with a large invasive area and low 
cell density (Figure 3), suggesting that large tumors do not 
necessarily contain a high number of  cells (Qi et al., 1993, 
Gerlee and Anderson, 2009). It is also notable, however, 
that high migration rates coupled with very low prolifera-
tion rates can result in increased invasion times, a possible 
result of  the “Go-or-Grow” dynamic. Mathematically, we 
were also able to show that increasing motility may increase 
invasion time due to the frequent formation of  cell clusters 
that limit the space required for proliferation and migration 
(Section 3.4.1). This shows that there exists an optimal com-
bination of  migration and proliferation for which tumor 
growth rate is maximized (Mansury et al., 2006).

In addition to the study of  tumor morphologies and cellular 
behavior, the model presented in this paper was also used 
to study population growth. Specifically, a logistic growth 
fit was performed after plotting population as a function 
of  time. This allows the investigator to estimate both the 
growth rate of  the population and the carrying capacity of  
the system. Cellular automaton models have also been used 
in the past to model population growth, particularly the 
Gompertz model (Qi et al., 1993) and the logistic growth 
model (Hu and Ruan, 2001). In the case of  Hu and Ruan, 
however, the cellular automaton model was based on a 
discretized form of  the continuous logistic model. Both 
models are supported by extensive literature; however, these 
approaches do not distinguish among the details of  the 
biological process. That is, growth models are incapable of  
demonstrating the dynamics of  tumor growth at the cellular 
level. It should be noted that the cellular automaton model 
presented here has a better fit to the logistic model when 
the migration probability is large (Figure 4). In low migra-
tion simulations, only cells on the outer rim are capable of  
proliferation or migration, while cells on the interior remain 
quiescent (Figure 3). As a result, fewer cells remain active. 
In contrast, the logistic model assumes all cells proliferate. 
Consequently, growth rates are less representative of  the 
cellular automaton cell population. The data generated by 
the model presented here is likely not logistic or Gompertz; 
this is currently under investigation. Finally, the cellular 
automaton model as described in this paper was used to 
model invasion time as a function of  cell proliferation and 
migration. Specifically, the analysis reveals that tumor cell 
invasion time decreases as the probability of  migration 

increases. In fact, further analysis of  this model shows that 
high cell motility can compensate for a low proliferation 
rate. In particular, cells with high migration and low prolif-
eration have comparable invasion times to those with low 
migration and high proliferation. This becomes especially 
significant because chemotherapy typically acts by killing 
cells that divide rapidly; this may fail to eliminate high 
motility cells with low proliferation rates (NCI, 2007; Skeel, 
2003). High motility cells, despite their rapid invasion times, 
may not be effectively targeted by standard treatments. 
Thus, treatments resulting in mass tumor death may actu-
ally select for high motility cells with equally rapid invasion 
times (Basanta et al., 2008; Thalhauser et al., 2009).

The model presented here is not without its limita-
tions. Many biologically important procedures have been 
neglected in order to provide a model to test the effects of  
migration and proliferation in the simplest possible setting. 
Furthermore, simulation results presented in this paper 
have not yet considered cell death. Once incorporated, 
simulation results will be analyzed and discussed in future 
work. Nonetheless, as the model becomes more complex, 
closely related tumor growth patterns (Figure 3) may be 
created by vastly different parameter settings. For example, 
widely scattered cells may indicate high motility, but may 
also be the result of  low proliferation and rapid death. In 
addition, functional behaviors like proliferation and migra-
tion may be influenced by the environment of  the cell; 
exposure to carcinogens, for example, can stimulate the 
rate of  proliferation for cancer cells (Campbell and Reece, 
2005). The extra-cellular matrix has also been shown to 
influence proliferation probabilities as well as direction of  
migration (Gerlee and Anderson, 2009). That is, rather than 
random diffusion, cell motility has more directed motion. 
Consequently, fixed proliferation and migration rates do 
not reflect the reality of  human tumor development. The 
current model also does not consider the presence of  a 
nutrient field, an important feature to be included in the 
future. Future studies will investigate the dynamics of  com-
peting cell populations in which each cell type has different 
migration and proliferation probabilities. Finally, the model 
currently assumes all cells to be equal of  size, but one can 
investigate the dynamics of  cell size by describing each 
tumor cell by multiple grid points. Cells may shrink due to 
intercellular forces, or increase due to the lack of  surround-
ing cells. Fortunately, once these biological parameters are 
further understood, the current model can be modified to 
incorporate more realistic biophysical processes.



6 4 T h e  U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l 

A  D I S C R E T E  C E L L U L A R  A U T O M A T O N  M O D E L

Acknowledgements

I want to thank Professor John S. Lowengrub for his tre-
mendous support and guidance throughout the project. 
I also want to recognize the support of  the Department 
of  Mathematics and the Center for Complex Biological 
Systems.

Works Ci ted

Anderson, A. A hybrid mathematical model of  tumor invasion: 
the importance of  cell adhesion. Mathematical Medicine and 
Biology, 22 (2005): 163–186.

Barnes, D.E., T. Lindahl, and B. Sedgwick. DNA repair. Curr. 
Opn. Cell Biol., 5 (1993): 424–433.

Basanta, D., H. Hatzikirou, and A. Deustch. Studying the emer-
gence of  invasiveness in tumors using game theory. Eur. 
Phys. J. B63.3 (2008): 393–397.

Campbell, Neil A. and Jane B. Reece. Biology. 7th ed. San 
Francisco, CA: Pearson Education, 2005.

Cavallini, F. Fitting a logistic curve to data. J. College Mathematics, 
24.3 (1993): 247–253.

Croce, C. Oncogenes and cancer. N. Engl. J. Med., 358 (2008): 
502–511.

Deutsch, A. and S. Dormann. Cellular automaton modeling of  
biological pattern formation. Birkhauser, 2005.

Drasdo, D. and S. Hohme. On the role of  physics in the growth 
and pattern of  multicellular systems: What we learn from 
individual-cell based models? J. Stat. Phys., 128 (2007): 
287–345.

Fall, C.P, E.S. Marland, J.M. Wagner, and J.J. Tyson. Computational 
cell biology. Springer Science, 2002.

Fidler, I.J. Origin and biology of  cancer metastasis. Cytometry, 10 
(1989): 673–680.

Gatenby, R.A. and E.T. Gawlinski. A reaction-diffusion model of  
cancer invasion. Cancer Res., 56 (1996): 5745–5753.

Gerlee, P. and A. Anderson. Evolution of  cell motility in an indi-
vidual-based model of  tumor growth. J. Theor. Biol., 259 
(2009): 67–83.

Gerlee, P. and A. Anderson. An evolutionary hybrid cellular 
automaton model of  solid tumor growth. J. Theor. Biol., 246 
(2007): 583–603.

Giese, A., R. Bjerkvig, M.E. Berens, and M. Westphal. Cost of  
migration: invasion of  malignant gliomas and implications 
for treatment. J. Clin. Oncol. 21.8 (2003): 1624–1636.

Greenspan, H.P. On the growth and stability of  cell cultures and 
solid tumors. J. Theor. Biol., 56 (1976): 229–242.

Hu, R. and X. Ruan. A logistic cellular automaton for simulat-
ing tumor growth. Proceedings of  the World Congress on 
International Control and Automation Shanghai., 4 (2001): 
693–696.

Kansal, A.R., S. Torquato, G.I. Harsh, E.A. Chiocca, and T.S. 
Deisbock. Simulated brain tumor growth dynamics using 
a three-dimensional cellular automaton. J Theor Biol. 203 
(2000): 367–382.

Mansury, Y., M. Diggory, and T.S. Deisboeck. Evolutionary game 
theory in an agent-based brain tumor model: exploring 
the ‘genotype-phenotype’ link. J Theor Biol. 238.1 (2006): 
146–156.

National Cancer Institute. Chemotherapy and you: support for 
people with cancer (2007). <http://www.cancer.gov/cancer-
topics/chemotherapy-and-you>.

Qi, A.S., X. Zheng, C.Y. Du, and B.S. An. A cellular automaton 
model of  cancerous growth. J. theor. Biol., 161 (1993): 
1–12.

Quranta, V., K. Rejniak, P. Gerlee, and A. Anderson. Invasion 
emerges from cancer cell adaptation to competitive microen-
vironments: Quantitative predictions from multiscale math-
ematical models. Sem. Cancer Biol., 18 (2008): 338–348

Sahai, E. Illuminating the metastatic process. Nat. Rev. Cancer. 7 
(2007): 737–749.

Sheer, C.J. Principles of  tumor suppression. Cell., 116 (2004): 
235–246.

Skeel, R.T. Handbook of  cancer chemotherapy. Lippincott 
Williams and Wilkins, 2003.

Smolle, J. and H. Stettner. Computer simulation of  tumor cell 
invasion by a stochastic growth model. J. theor. Biol., 160 
(1993): 63–72.



65T H E  U C I  U N D E R G R A D U A T E  R E S E A R C H  J O U R N A L

D u s t i n  D .  P h a n

Thalhauser, C.J., J.S. Lowengrub, D. Stupack, and N.L. Komarova. 
Selection in spatial stochastic models of  cancer: migration as 
a key modulator of  fitness. Biology Direct (2009): in press.

Tracqui, P. From passive diffusion to active cellular migration in 
mathematical models of  tumor invasion. Acta Biotheor., 43 
(1995): 443–464.

Vinayg, G. and J. Frank. Evaluation of  some mathematical models 
for tumor growth. Int. J. Biomedical Computing, 13 (1982): 
19–35

Ward, J.P. and J.R. King. Mathematical modeling of  avascular-
tumor growth II: modeling growth saturation. IMA J. Math. 
Appl. Med. Biol., 16 (1999): 171–211.

Wodarz, D. and N.L. Komarova. Computational biology of  
cancer: lecture notes and mathematical modeling. World 
Scientific Publishing, 2005.



66 T h e  U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l 

A  D I S C R E T E  C E L L U L A R  A U T O M A T O N  M O D E L

66 T h e  U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l 


