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This research introduces an agent-based model for simulating solid 
tumor growth. Mathematical modeling and numerical simulation 
have the potential to provide important insight into the root causes 
of  solid tumor invasion and metastasis. Such models have been 
widely used for healthy cells but not for cancer modeling; however, 
the mechanisms are thought to be similar. An important feature 
of  cancer is the communication and adhesion among the cancer 
cells and the extracellular matrix. At the time this research was per-

formed, previous agent-based models did not consider this effect. Now, several other 
models account for these effects, although none consider the questions asked here. 
Research projects such as this provide undergraduates with a unique opportunity to 
bridge classroom experience and knowledge with important real world applications.
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Tumor development is a complex and multi-faceted process that cannot be cap-
tured in a single formula, yet the ability to predict a maturing tumor’s magnitude 

and direction of  growth would provide significant clinical benefits. In-vitro trials 
provide only limited predictive data since it is nearly impossible to chemically repro-
duce the exact environmental conditions surrounding a tumor. Moreover, each trial 
is necessarily unique to a specific tumor and cannot be quickly modified to satisfy 
the requirements of  another. Mathematical models provide a virtual solution to this 
problem by implementing the core processes of  tumor development in software. We 
present a model for tumor development from the single-cell stage to early microinva-
sion. An overlying nutrient field determines a cell’s status as living, quiescent, mutant, 
or nonviable. Interactions between tumor cells are simulated using a competing 
exponential function and nutrient influx is modeled using the diffusion equation. 
The object-oriented implementation allows the introduction of  multiple nutrient 
and chemical fields. The model may be applied to a variety of  emerging tumors by 
carefully defining the constants that determine the tumors’ development pathway and 
microenvironment. We present simulation results that demonstrate the flexibility of  
the model and its future applicability.
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Introduct ion

Cancer
Cancer afflicted a reported 1.44 million individuals within 
the United States during 2007 (American Cancer Society 
1). These cases encompassed the majority of  organ sys-
tems in the human body. In each case, tumor development 
occurs along a characteristic pathway, yet effective treat-
ment options are often limited by the type and location of  
the tumor. Generalized chemotherapeutic agents combat a 
broader selection of  cancers by targeting the characteristic 
behaviors commonly seen in abnormal tissue.

The largest class of  chemotherapeutic medications coun-
ters tumor cells that are overactive consumers. The muta-
tions leading to the development of  a tumor cell are often 
located in growth or proliferation genes and consequently 
induce the cell to rapidly consume nutrients within its vicin-
ity (Hanahan and Weinberg 63). A toxic agent introduced 
into the patient’s body is globally absorbed, but at a faster 
rate by cells mutant for the consumption gene. The rate 
of  consumption of  a particular substance depends on cel-
lular phenotypes and the extracellular environment. These 
parameters must be considered when defining an appro-
priate dosage for a chemotherapeutic agent. The optimal 
solution would be dosage sufficient to eradicate the zealous 
tissue while exhibiting little to no harmful effect on the 
nearby normal tissue.

This seemingly complex problem may be reduced to a 
two-variable system involving the competition between the 
rate of  drug diffusion in solution and the rate of  cellular 
uptake. The former may be measured in vitro while the lat-
ter depends on a cell’s phenotype. The rate of  uptake by 
normal cells is expected to be less than that of  mutant cells. 
The modeling challenge is to describe the rate of  consump-
tion of  chemotherapeutic agents as a function of  the tumor 
mass at any given time. A comparison may then be made 
against the basal uptake rate by normal tissue to determine 
the sufficient dosage for a tumor at its current stage. The 
uptake rate of  a tumor at a given stage is clearly the result 
of  its development pathway.

Tumor Development
The development of  an invasive tumor from normal tissue 
is an elaborate process that roughly divides into three stages. 
Stage 1—A healthy cell must first accumulate a collection of  
mutations in a specific family of  genes. The mutant cell then 
becomes the ancestral parent of  a strain of  mutated cells 
that forms a spherical mass isolated from the surrounding 
tissue. Stage 2—Peripheral tumor cells deplete the nutri-

ent supply as it diffuses into the spherical tumor. Central 
tumor cells are nutrient deprived resulting in a characteristic 
necrotic core. The tumor continues to thrive through the 
rapid division of  viable cells on the sphere periphery. Stage 
3—Environmental factors signal the peripheral cells to 
invade the surrounding tissue and/or to release chemical 
agents that induce the formation of  nearby blood vessels. 
Metastasis of  the tumor occurs locally (microinvasion) 
through individual cell movement or system-wide (macro-
invasion) through the bloodstream.

Accumulation of  Mutations. Tumor development begins when 
a single cell accumulates mutations in a set of  critical 
genes. Several mutations are usually necessary to affect the 
change from normal to abnormal growth. The essential 
sets of  genes implicated in tumor development are the 
tumor suppressor and oncogene families. These genes code 
for proteins that control cell proliferation and growth. A 
loss-of-function mutation in a tumor suppressor gene or a 
gain-of-function mutation in an oncogene may increase the 
division rate or the lifespan of  the affected cell. A cell that 
proliferates incessantly or that ignores signals from other 
cells (esp. apoptotic signals) may give rise to a lineage of  
invasive cells.

Necrotic Core Formation. The rapid division of  the initial 
mutant cell results in the logistic growth of  a spherical 
tumor. Studies have indicated that, although tumor cells do 
not respond to signals from normal cells, they do exhibit 
adhesion to one another (Anderson 164). The close prox-
imity of  highly competitive cells results in the depletion 
of  the local nutrient concentration. Cells stranded in the 
center of  a tumor mass are starved for nutrients and form 
a necrotic central region. The tumor displays the character-
istic three-layer structure of  viable, quiescent and necrotic 
cells as a dynamic equilibrium is reached between diffusive 
nutrient influx and cellular nutrient consumption (Gerlee 
and Anderson 4).

Invasion. The starvation of  inner tumor cells leads to their 
competitive advance. These cells may encroach upon the 
surrounding tissue or release signaling molecules that pro-
mote the growth of  nearby blood vessels. Microinvasive 
encroachment is a localized phenomenon that is performed 
by phenotypically mutant cells. The mutation allows the 
cells to successfully detach from the spherical tumor mass. 
A macroinvasive cell may release Vascular Endothelial 
Growth Factors (VEGFs) that induce endothelial cells to 
form vessels towards the tumor. VEGFs are signaling pro-
teins that normally play benign roles but also function as an 
abnormal cell’s response to nutrient deprivation. The pro-
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cess by which tumor cells gain access to the blood supply is 
termed vascularization.

Mathematical Models
The three stages of  tumor development are the result of  
complex intracellular, intercellular and extracellular process-
es. The inherent difficulty of  reducing each stage into sci-
entifically useful pieces has given rise to sophisticated tumor 
models. The goal of  an abstract model is to understand a 
complex system that cannot be appreciated using the typical 
pen-and-paper approach. In biology, the existence of  mul-
tiple inhibitors and repressors for a single gene provides an 
immediate appreciation for the utility of  a calibrated model. 
An initial concentration and spatial distribution may be 
specified for each enzyme and the resulting gene activity cal-
culated without in-vitro experimentation (Jiang et al. 3885). 
Similarly, a thoroughly developed tumor model could pro-
vide preemptive information about a tumor’s development 
pathway. Models aiming to achieve this goal are still in their 
infancy and are broadly classified as either continuous or 
discrete. Models that incorporate features from both classes 
are termed hybrid models.

Continuous Models. A continuous model is defined by partial 
differential equations (PDEs) that govern the evolution of  
a tumor mass. The tumor’s physical dimensions and growth 
rate are measured and visually displayed without reference 
to the behavior of  the underlying cells. Continuous models 
sacrifice the maintenance of  cell-specific properties in favor 
of  computational speed.

Discrete Models. Portions of  a discrete model may be based 
on continuous PDEs, but the heart of  a discrete model 
is the maintenance of  disjoint units of  information that 
change over time and sum to produce the overall system. 
Time is broken into constant steps rather than allowing for 
a continuous progression. For example, an agent-based dis-
crete model may focus on the individual objects affecting a 
system’s evolution. An agent-based population model would 
store location and genotypic/phenotypic information for 
every member of  the species within the region of  interest. 
Population trends would be calculated based on the pairwise 
interactions between individuals over time, rather than an 
overall PDE describing the population mass. This model-
ing approach is computationally demanding but provides 
greater insight into the constructed nature of  the system.

Hybrid Models. A combination of  continuous and discrete 
modeling techniques provides the benefits of  both imple-
mentations within the same simulation (Ramis-Conde, 
Chaplain, and Anderson 534). A discrete model for the 

distribution of  bacteria after exposure to an antibiotic could 
model individual cells by biasing their proliferation and 
viability according to the drug’s spatial distribution. This 
agent-based model could be extended by incorporating the 
continuous diffusion equation to describe the movement of  
the antibiotic down its concentration gradient. The resulting 
hybrid model would simulate the bacteria’s response to a 
diffusing antibiotic in solution.

Mathematical  Model

We present avascular tumor development using a two-
dimensional hybrid continuum/discrete mathematical 
approach. Our model simulates the development pathway 
from a single cell to the formation of  a stable necrotic 
region and proceeds to the early stages of  microinvasion. 
Cells function as the component agents whose properties 
are maintained. Stored cell data includes spatial, genotypic 
and phenotypic information. The diffusion PDE is used 
to model the competition between diffusive nutrient influx 
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Figure 1
Overall simulation flowchart. The symbol Ni denotes the nutrient 
concentration around cell i. Td refers to the viability threshold while 
Tq refers to the quiescence threshold.
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and cellular nutrient uptake. Tumor cells adhere to and 
repel from one another via the potential interaction equa-
tion previously described by Chuang et al. (Li Chuang, et al. 
4). Temporal progression occurs through discretized time-
steps. Figure 1 provides an overview of  the processes that 
occur within a single time-step.

A common set of  calculations is performed on the cells dur-
ing each time-step. These calculations include routine tasks 
such as verifying viability and quiescence statuses (yellow 
blocks) and checking for mitosis (blue blocks). The lower 
orange blocks in Figure 1 refer to processes that affect cellu-
lar movement. These processes include intercellular forces, 
haptotaxis and chemotaxis. Cell positions are updated after 
the last iteration through the loop. The nutrient concentra-
tion described by the PDE is allowed to reach equilibrium 
prior to the next time-step (red block).

Cell Calculations
The model maintains a set of  physical variables for each 
cell. Table 1 provides a list of  these properties along with 
their default values as specified for the initial cell. The values 
of  these properties collectively determine the cells’ divi-
sion, localized movement and invasion rates during each 
time-step.

Table 1
List of viability parameters maintained for every cell along with their 
non-dimensionalized default values

Variable Initial Value 

Speed 1.000 

Age 0.000 

Time until next cell division 0.083 

Mitosis period 0.083 

Lifespan ∞ 

Generation Number 0.000 

Maximum Generation ∞ 

Current position in space (0, 0, 0) 

Local nutrient concentration 1.000 

Quiescent No 

Contains phenotypic mutation No 

Living Yes 

Physical Variables. A cell remains alive and capable of  divid-
ing as long as there is sufficient nutrient in its vicinity. If  
the local nutrient concentration drops below the quiescence 
threshold, Tq, the cell loses its ability to divide. Quiescent 
cells have a slower metabolic rate that is modeled by a 
decreased rate of  nutrient consumption. Microinvasive 

tumor cells arise from quiescent cells undergoing extreme 
nutrient deprivation. If  the nutrient concentration falls 
below the viability threshold, Td, the cell dies.

The starvation of  tumor cells has been implicated in the 
microinvasion pathway. We model this phenomenon by 
inducing a phenotypic mutation in randomly chosen qui-
escent cells. A phenotypically modified cell detaches from 
the tumor mass and migrates up the nutrient gradient by 
degrading the local fibronectin concentration.

Mitosis. A cell undergoes mitosis if  several conditions are 
met. First, the cell must not be quiescent or a phenotypic 
mutant as determined by the previous checks. There is also 
a minimum waiting period after the cell’s previous division. 
This check ensures that the cell has had enough time to 
perform the essential stages of  the cell cycle. The waiting 
period for division is dependent on the local nutrient con-
centration. This models the increased time it takes a cell to 
acquire sufficient resources to divide in a nutrient-deficient 
environment.

The last mitosis check verifies that there is sufficient space 
around the parent cell. Physically, a cell cannot divide when 
it is spatially constrained by adjacent cells. This phenom-
enon is taken into account by examining the cell’s repulsion 
coefficient from the potential interactions equation. The 
repulsion coefficient must be below a constant threshold 
to permit division. A cell that passes all of  the checkpoints 
divides into two daughter cells. A new cell is added to the 
cell array with identical parameters to that of  the parent 
except for location. The new cell’s position is a small ran-
dom offset of  the parent’s position.

Cell Movement
Selected cells move a random amount according to the 
Gaussian Normal Distribution with mean zero and stan-
dard deviation equal to the square of  the time-step size. 
These cells also move in response to the forces exerted on 
them by nearby cells and in response to chemical and nutri-
ent gradients. These biasing agents influence the velocity of  
a cell. In general, we may express the continuous position 
of  a cell at time t as:

( ) ( )
0

t
x t v s ds= ∫ (1)

Where ( )v t  is the velocity vector of  the cell at time t. To dis-
cretize this formula, suppose that we wish to update a cell’s 
position for the nth time-step given that we are on time-step 
n - 1. We may split the integral along this time:
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( )
( )

( )
( )

( )

Cell position at time-step (n–1)
Displacement of cell during nth time-step

1

0 1

n t n t

n t
x n t v s ds v s ds

− Δ Δ

− Δ
Δ = +∫ ∫

(2)

Note that Δt in this case denotes the size of  one time-step. 
The first integral represents the cell’s position at time-step 
n - 1:

( ) ( )( )
( )

( )
1

1
n t

n t
x n t x n t v s ds

Δ

− Δ
Δ = − Δ +∫ (3)

For sufficiently small Δt, we may approximate the right inte-
gral by the product ( )v n t tΔ Δ :

( ) ( )( ) ( )1x n t x n t v n t tΔ = − Δ + Δ Δ (4)

This is the discretized formula for calculating a cell’s posi-
tion at time nΔt given the cell’s position at the previous 
time-step. The value of  the velocity vector at time nΔt is 
determined by the sum of  velocity vectors from each bias-
ing agent:

I H CI H Cv D D Dv v v= + + (5)

The subscripts I, H and C stand for intercellular interactions, 
haptotaxis and chemotaxis, respectively. DX is a constant 
coefficient defined for biasing agent X. The velocity compo-
nents are described in detail in the following sections.

Intercellular Forces. Cell-to-cell adhesion and repulsion mutu-
ally contribute to the intercellular forces term in the veloc-
ity equation. For each pair of  cells located at ix  and jx  we 
define the interaction potential to be:

U C e C e= −

RepulsionAttraction

x x x xi j i j
L LA R

i j A R

− −
− −

,

Where CA and CR are magnitude constants of  attraction 
and repulsion, and LA and LR are length-scale constants of  
attraction and repulsion. A positive value of  U indicates an 
attractive potential between the pair of  cells while a negative 
value represents a repulsive potential. A potential value of  
zero indicates that the cells are at an equilibrium distance 
apart. The gradient of  the potential function provides the 
direction that one cell must move to reach equilibrium with 
the other cell. The sum of  the potential gradients from all 
other cells determines the intercellular forces velocity term 
for cell i:

( )

I
1

N t
i

i j
j j i

Uv ,
= , ≠

= ∇∑ (6)

The value of  N (t) is the number of  cells at time t. The 
strength of  adherence and repulsion are examples of  cell-
specific constants that can be maintained in an agent-based 
model.

Haptotaxis and Chemotaxis. Phenotypically mutant cells invade 
to replenish their depleted nutrient supply. Movement 
occurs upwards along the nutrient gradient via the degra-
dation of  extracellular matrix (ECM) proteins. We model 
the ECM protein, fibronectin, through the use of  a square 
lattice of  chemical grid points similar to the angiogenesis 
model of  Plank and Sleeman (Plank and Sleeman 1798). 
Migrating mutant cells simultaneously produce fibronectin 
to form channels exiting the tumor. Thus, although nutrient 
deprived cells must climb the fibronectin scaffold to exit 
the tumor, they replenish it with a higher concentration of  
protein. Future mutated cells tend to follow the previously 
taken pathways due to the higher fibronectin concentra-
tion.

As noted above, the concentration of  fibronectin at a 
mutant cell’s position directly affects the rate of  movement 
due to the nutrient gradient. Considering cell i located at ix  
we have:

C i i

i
x xf uv = ∇ (7)

The symbols f and u represent the fibronectin and nutrient 
fields, respectively, and thus 

ixf  and 
ixu  are the values of  

these fields at the cell’s position during the current time-
step. The fibronectin field increases slowly as mutant cells 
progress away from the tumor. In addition to increasing 
the mobility of  starved cells along the nutrient gradient, 
the newly created fibronectin channels increase the rate at 
which cells move down the fibronectin gradient.

Migrating cells choose pathways with the highest availability 
of  ECM proteins. We model this phenomenon by introduc-
ing a haptotaxis biasing agent that influences cells to move 
along the fibronectin gradient:

H i

i
xfv =∇ (8)

Nutrient Field
The model simulates a single nutrient field across the square 
computation plane. Nutrient flows inward according to the 
diffusion equation with a fixed boundary of  one. Living 
cells consume the nutrient field at an exponential rate. The 
consumption rate is highly localized around each cell and 
falls off  quickly with distance. Equation 9 presents the 
nutrient PDE in its entirety.
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Nutrient Diffusion

2u k u
t

∂
= ∇

∂

( )

( )

Nutrient Consumption

1

N t

l
l

f u x
=

⎛ ⎞⎟⎜ ⎟⎜ , ⎟⎜ ⎟⎟⎜⎝ ⎠
∑— (9)

Nutrient Diffusion
The nutrient concentration is replenished according to the 
diffusion equation in two dimensions with a fixed square 
boundary:

2 2
2

2 2

u uk u k
x y

⎛ ⎞∂ ∂ ⎟⎜ ⎟∇ = +⎜ ⎟⎜ ⎟⎜∂ ∂⎝ ⎠
(10)

The constant k determines the rate of  nutrient influx. The 
diffusion rate of  oxygen in water varies strongly with tem-
perature. At 20 ºC, the coefficient k has been previously 
calculated as 0.00197 mm2/s (Richard 1)

Nutrient Consumption. Cells consume nutrient at a rate that 
falls off  exponentially with distance. The summation in 
Equation 9 is over the set of  living cells at time t. Cell l 
consumes the local nutrient according to the following 
equation:

f u e u, =−( )
2

2
x xl

lx ελ
−| − |

(11)

Where λ is the single-cell consumption rate, lx  is the loca-
tion of  cell l as a function of  time, and ε sets the degree of  
localized nutrient consumption.

Numerical  Methods

The agent-based modeling paradigm strongly supports an 
object-oriented implementation. We view cells as self-con-
tained entities with a fixed set of  physical characteristics 
and functions (division, invasion, interactions, etc.). In an 
object-oriented programming language, information unique 
to a particular class of  objects, such as cells, may be encap-
sulated and protected from external modification. We refer 
to implemented classes using an italicized term with the first 
letter of  each word capitalized to distinguish them from 
their physical analogues (e.g. Cell refers to the class repre-
senting a physical cell). The process of  instantiation creates 
an object of  the respective class and allocates memory to 
store the new object’s data. Thus, instantiation of  the Cell 
class performs the necessary tasks to create a new cell. A 
complete list of  the classes implemented in the model is 
provided in Table 2. Portions of  the model implemented in 
each class are discussed in the section that follows.

The classes NutrientEquation, PotentialInteractions and Fibronectin 
inherit operations from the more general GenericField class. 
Inheritance is an important object-oriented programming 
concept that allows code to be reused among similar classes. 
Its use in the model provides a high degree of  scalability.

Table 2
List of classes implemented in the model. An object-oriented imple-
mentation allows the encapsulation of data unique to a specific 
class of objects.

Class

TumorGrowth
Cell

Mitosis
NutrientEquation

Fibronectin
DecayingFibronectin
PotentialInteractions

The numerical tools used to implement the model were 
chosen based on their running time efficiency and ability 
to provide the desired object-oriented features. The model 
was written in C++ for rapid execution and real-time visu-
alization. MATLAB was used for partial postprocessing 
visualization.

Implemented Classes
TumorGrowth. The TumorGrowth class maintains an array of  
Cell objects that is initially populated with a single cell. The 
class controls execution of  the model by calling functions 
to perform the actions presented in the flow chart of  Figure 
1. Quick comparison calculations are carried out within 
TumorGrowth while more complex operations are located 
within their own classes (e.g. Mitosis, NutrientEquation and 
PotentialInteractions).

At every time-step, a subset of  living cells from the cell 
array is selected for the calculation loop shown in Figure 
1. Simulation results indicate that it is sufficient to take 
log10 (N) cells where N is the size of  the cell array. This is 
primarily a consequence of  the small time-step relative to 
the number of  cells. In larger simulations, it would be neces-
sary to choose a greater subset of  cells.

The selected cells are passed to an update function that 
updates that cell’s local nutrient concentration and checks 
it against the nutrient thresholds. The cell’s quiescent, phe-
notypic mutation and living boolean variables are updated 
appropriately. Note that once a cell is marked as dead it is 
no longer a candidate for the update function. The update 
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function increments the cell’s age variable and checks for 
mitotic cell division.

Cell and Mitosis. The Cell and Mitosis classes are 
strongly linked. After TumorGrowth verifies that 
a cell is ready to divide, it invokes an instance of  
Mitosis to perform the division. The division func-
tion copies all of  the parent cell information and returns a 
new Cell object that is added to the array of  cells.

NutrientEquation. The NutrientEquation class contains the 
numerical implementation of  Equation 9. The nutri-
ent concentration is defined across a rectangular grid of  
points. During each time-step of  length t, nutrient diffuses 
across the nodes and cells consume from the nearby nodes. 
Discretization of  the diffusion portion was accomplished 
using the central difference method. To begin the derivation 
of  the nutrient concentration at node (i, j) and time-step 
n + 1, we first rewrite the left-most and right-most portions 
of  Equation 9 as:

( ) ( )2

2

1 2 2

2 2
1

n tx xi j l
nn n N n t

i j i j n
i j

l

u u u uk e u
t x y

ελ
−| − Δ |,+ Δ

, ,
,

=

⎛ ⎞− ∂ ∂ ⎟⎜ ⎟= + −⎜ ⎟⎜ ⎟⎜Δ ∂ ∂⎝ ⎠
∑ (12)

Notice that we have substituted nΔt in for the continuous 
time t since we are assuming a fixed time-step. The super-
script n on the continuous diffusion term merely denotes 
that we are considering a discretized time-step.

The central difference method computes the gradient at a 
grid point by taking the average value of  the gradient across 
the four nearest grid points. In particular, we may rewrite 
the continuous diffusion equation at time-step n as:

1 1 1 12 2
1 1 1 1

2 2 2 2

2 2n n n n n n n
i j i j i j i j i j i ju u u u u uu u

x y x y

+ + + +
+ , , − , , + , , −⎛ ⎞ − + − +∂ ∂ ⎟⎜ ⎟+ = +⎜ ⎟⎜ ⎟⎜∂ ∂ Δ Δ⎝ ⎠

(13)

Substituting this expression into that of  Equation 12 pro-
duces the completely discretized nutrient equation:

1 1 1 1 1
1 1 1 1

2 2

2 2n n n n n n n n
i j i j i j i j i j i j i j i ju u u u u u u u

k
t x y

+ + + + +
, , + , , − , , + , , −

⎛ ⎞− − + − + ⎟⎜ ⎟⎜= + ⎟⎜ ⎟⎟⎜Δ Δ Δ⎝ ⎠

( ) ( ) ( )2
2

1

i j n txlN n t
n
i j

l

e uελ
−| , − Δ |Δ

,
=

− ∑

(14)

The model uses a fixed spacing, h, between adjacent hori-
zontal and vertical nodes so we have Δx = Δy = h. Equation 

14 may be solved for the value of  the nutrient concentration 
at grid point (i, j) and time-step n - 1:

( ) ( ) ( )2
21 1 2

1 1 1 1
1 1

4

i j n txlN n t
n n n n n n
i j i j i j i j i j i j

n l
i j

k u u u u u h e u
u

k

εγ λ

γ

−| , − Δ |Δ
⎛ ⎞+ + ⎟⎜ ⎟⎜ ⎟⎜ ⎟+ , − , , + , − , ,⎝ ⎠

+ =
,

+ + + + −
=

+

∑ (15)

Where 
2h
tγ Δ= . The initial nutrient concentration at each grid 

point is set to one: u (x, y, 0) = 1 and the boundary is fixed at 
one: u (min (x), y, t) = 1, (max (x) y, t) = 1, (x, min (y), t) = 1, 
(x, max (y) t) = 1.

An object of  the Nutrient class maintains a discrete field of  
nutrient grid points along with functions for updating the 
field. Requests for evaluation at an arbitrary point on the 
computation plane are mapped to the nearest grid point. 
The competition between the influx of  nutrient by diffusion 
and the removal of  nutrient by cellular consumption stabi-
lizes after several iterations. Only grid points whose nutrient 
values have changed significantly (defined by a constant) 
are updated. A single pass over all the grid points identi-
fies those that have changed. The single pass is performed 
again after a set number of  uptake cycles have occurred. 
This algorithm was first introduced by Dr. Paul Macklin and 
decreases the time needed to solve the discretized nutrient 
equation (Macklin and Lowengrub 283).

Fibronectin and DecayingFibronectin. The Fibronectin and 
DecayingFibronectin classes contain the necessary routines to 
maintain and update the discretized fibronectin field. The 
implementation is identical to that of  the NutrientField class 
minus the diffusion functions. The Fibronectin class defines 
the underlying grid while the DecayingFibronectin class con-

tains functions that cells call to create or diminish the 
field. The degradation and production functions for each 
cell are the same as Equation 11. Note, however, that 
the rate coefficients of  nutrient degradation, fibronectin 

degradation and fibronectin production are distinct and that 
the production coefficient is negative.

PotentialInteractions. The task of  calculating cellular interac-
tions is passed off  to a separate PotentialInteractions class. A 
member function of  this class accepts a reference to the 
current cell array and a specific cell index. The function 
iterates over the array and computes the summation given 
in Equation 6. The attractive and repulsive components are 
computed independently and preserved in separate arrays. 
This is necessary for the cell-repulsion check prior to mito-
sis.
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Field Inheritance
The PotentialInteractions class inherits functions from the 
more general GenericField class. The Fibronectin and Nutrient 
classes also inherit from GenericField. It is worth describing 
the structure of  this inheritance to obtain a clear picture 
of  the benefits of  the object-oriented design of  the model. 
Although the potential, nutrient and fibronectin fields con-
ceptually represent distinct entities, the physical definition 
of  a field implies certain common characteristics.

The situation of  having two similar objects that share synon-
ymous functions, but with different implementations, arises 
quite often in computer science. Inheritance allows a general 
description of  the commonalities between the classes while 
maintaining enough room for separate implementations. 
GenericField provides function names for a physical field. 
Evaluation, the spatial partial derivatives, and the magnitude 
of  the gradient are defined in GenericField (see Table 3 for a 
complete list of  functions defined in GenericField). In fact, 
the magnitude of  the gradient is implemented in GenericField 
although the partials themselves are not. Inheriting classes 
must implement functions not implemented in GenericField 
(i.e. everything but the gradient magnitude), but a common 
naming convention is preserved. In this manner, it is a trivial 
task to define an array of  GenericField objects whose actual 
instantiations may be any of  PotentialInteractions, Nutrient or 
Fibronectin.

Table 3
Functions defined in the GenericField class along with inheriting 
classes and the method of each implementation.

Abstract Class GenericField

Function Implementing classes and type of implementa-
tion 

f (x, y, z) PotentialInteractions Direct evaluation of Equa-
tion (6) 

Fibronectin Discretized using the cen-
tral difference method 

Nutrient 

f f f
x y z

∂ ∂ ∂
, ,

∂ ∂ ∂  

PotentialInteractions Continuous derivation 
from Equation (6) 

Fibronectin Nutrient Discretized using the cen-
tral difference method 

f∇ GenericField Implemented as 
22 2f f f

x y z
⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎟⎜⎟ ⎟⎜ ⎜+ ⎟ +⎟ ⎟⎜⎜ ⎜⎟⎟ ⎟⎜ ⎜⎜ ⎟⎜⎝ ⎠ ⎝ ⎠∂ ∂ ∂⎝ ⎠

 

Implementation Tools
Standard computational tools were used to construct the 
model. An object-oriented framework was built to support 
each cell as an autonomous unit. The entire simulation was 
written in C++ with strict adherence to accepted best-prac-
tices in class design. Independent classes were constructed 
to maintain the functions and parameters of  cells, fields 
and other distinct entities within the model. Visualization 
was accomplished through an OpenGL-based display and 
frame-by-frame output. Cell data was also output as a text 
file containing each time-step. The latter enabled postpro-
cessing visualization in MATLAB without the time-con-
suming process of  concatenating image files. A simulation 
begins upon instantiation of  the central TumorGrowth class.

4. Numerical  Results

The simulation parameters in Tables 1 and 4 along with 
other parameters, such as those for the nutrient field and 
cellular interactions, determine the overall behavior of  the 
tumor.

Table 4
List of global constants that determine the pathway of tumor devel-
opment.

Global Constants 

Variable Initial Value 

Maximum number of cells ∞ 

Computation window dimensions [–1, 1]×[–1, 1] 

Number of iterations ∞

Time-step size 0.001 

Random number seed 1.000 

Quiescence nutrient threshold 0.600 

Living nutrient threshold 0.500 

Mutation nutrient threshold 0.510 

Repulsion maximum for division 2.000 

Selected parameters were varied to understand their effects 
on the simulation. The five variables considered are listed in 
Table 5. Three thresholds exist that determine a tumor cell’s 
status as normal, quiescent, mutant, or dead (see Figure 1). 
The images in Figures 2 through 7 represent these states as 
green, blue, black, and red, respectively. Phenotypic muta-
tions were disabled in Figures 2, 3 and 4 to focus on the 
tumor at the stable necrosis stage prior to microinvasion.
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Table 5
List of global constants that determine the pathway of tumor devel-
opment.

Simulation Specifi c Constants

Variable Symbol Default Value 

Potential attraction/repulsion coef-
fi cient ratio 

CA/CR 0.300 

Potential attraction and repulsion 
length-scales 

LA, LR 0.500, 0.100 

Quiescence nutrient threshold Tq 0.600 

Living nutrient threshold Td 0.500 

Mutation nutrient threshold Tm 0.510 

Potential Coefficients
The potential coefficients and length-scales are those given 
in Equation 6. The effect of  the potential coefficients on 
the diameter of  the tumor at a particular time-step is visu-

ally demonstrated in Figure 2. Similarly, Figure 3 shows the 
effects of  the length-scale on the tumor’s development. The 
tumor’s dimensions are largely determined by these four 
parameters. It is a requirement that the greater length-scale 
belong to the weaker force. This prevents implosion or 
indefinite expansion of  the tumor.

Attraction to Repulsion Ratio. Increasing the ratio of  attraction 
to repulsion increases the tendency of  cells to adhere to 
one another. Lower values of  CA/CR produce larger tumors 
suitable for simulations requiring thousands of  cells. High 
values constrict the cells together reducing the diameter 
of  the tumor. A small tumor diameter precludes cell divi-
sion because of  the adjacency check prior to division. The 
decreased number of  cells prevents depletion of  the nutri-
ent and provides for cell viability.

Attraction and Repulsion Length-Scales. The potential length-
scale constants determine the effective radii of  attraction 
and repulsion. The computation plane consisted of  the 
unit-square and the repulsion length-scale was fixed at one-
tenth of  this value. The left-most image of  Figure 3 occurs 
when the length-scale of  attraction equals that of  repulsion. 
In this case, the tumor’s dimensions are determined by the 
ratio of  the attraction and repulsion coefficients. The latter 
four images are similar because the attraction length-scale 
strongly dominates the repulsion length-scale, although the 
magnitude of  localized repulsion is still greater.

CA

CR
= 0.1

CA

CR
= 0.5

CA

CR
= 0.4

CA

CR
= 0.3

CA

CR
= 0.2

Figure 3
Effect of increasing the length-scale of attraction. The repulsion 
length-scale was fixed at 0.1 while the ratio of attraction to repul-
sion was set to 0.3. The images were taken at the five-thousandth 
time-step. The last four image are similar because the attraction 
length-scale strongly dominates the repulsion length-scale.

Nutrient Thresholds
Figures for the quiescence, viability, and mutation thresh-
olds were produced at the five-thousandth time-step as still 
frames from the graphical output.

Quiescence. A cell must drop below the fixed Tq threshold to 
become quiescent. Figure 4 shows the effects of  increas-
ing Tq on the tumor. The number of  cells in the quiescent 

CA

CR
= 0.1

CA

CR
= 0.5

CA

CR
= 0.4

CA

CR
= 0.3

CA

CR
= 0.2

Figure 2
Effect of attraction/repulsion ratio on tumor diameter. The vertical 
axis is set up in one thousand time-step increments with the first 
row being at the thousandth step. The length-scales of attraction 
and repulsion have been set to 0.5 and 0.1, respectively.
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state increases with Tq thereby determining the depth of  the 
viable rim.

CA

CR
= 0.1

CA

CR
= 0.5

CA

CR
= 0.4

CA

CR
= 0.3

CA

CR
= 0.2

Figure 4

Effect of varying quiescent nutrient threshold, Tq, on tumor mor-
phology.

Viability. Cells whose local nutrient concentration drops 
below the threshold for viability, Td, are marked as dead. 
Figure 5 shows four simulations with increasing viability 
thresholds. A high viability threshold decreases the time a 
cell may exist in the quiescent state. Thus, the number of  
quiescent cells diminishes rapidly as the necrosis threshold 
is increased.

CA

CR
= 0.1

CA

CR
= 0.5

CA

CR
= 0.4

CA

CR
= 0.3

CA

CR
= 0.2

Figure 5

Effect of varying viability nutrient threshold, Td, on tumor morphol-
ogy.

Mutation. A subset of  the cells that fall below the mutation 
threshold are made to undergo a microinvasive pheno-
typic mutation. Note that the mutation threshold, Tm, is 
less than Tq to ensure that the invading cells are mitotically 
deactivated due to nutrient deprivation. Figure 6 shows the 
effects of  increasing the mutation threshold. The increasing 
mutation threshold decreases the number of  necrotic cells 
since mutant cells are able to migrate away from the nutri-
ent-deprived core.

Over time, the mutant cells break the adhesive forces bind-
ing them to the other cells and move away from the tumor 
along fibronectin and nutrient gradients. Figure 7 shows a 
longer simulation at the forty-thousandth time-step. The 
darkened paths were produced by interpolating the fibro-
nectin grid points across the pixels of  the figure. The darker 
lines indicate a high fibronectin concentration.

Mutant cells degrade and produce the local fibronectin con-
centration. Production is the dominating process and thus 
mutant cells create pathways of  high fibronectin as they 
leave the tumor. Later mutants tend to exit the tumor along 
these preformed paths.

Figure 7
A fraction of viable cells below the mutant threshold are selected 
to undergo a phenotypic mutation. These cells move away from the 
tumor up the nutrient gradient. Each cell produces a local fibronec-
tin field that also biases the motion of future mutants. This type of 
migration is termed microinvasion and is believed to be a response 
to nutrient deprivation. This still frame was taken at the forty-thou-
sandth time-step.

Conclusion

An extensive range of  processes participate in tumor devel-
opment. The three generalized phases of  tumor growth 
include the initial single-cell genetic mutation and expo-
nential division, formation of  a circular mass with a central 
necrotic region and a proliferating rim, and invasion on 
either a micro or macro level. Chemotherapeutic treatment 
options focus on the rampant proliferation and consump-
tion associated with invasive tissue. The question of  appro-
priate medicinal dosage rests on the rate of  abnormal drug 
consumption compared to the basal consumption rate. We 
have introduced a computational model for avascular tumor 
growth that simulates the essential competition between dif-
fusive nutrient influx and cellular nutrient uptake witnessed 
in a variety of  tumors.

The model maintains individual cell data in an agent-based 
fashion while incorporating features of  continuous models 

CA

CR
= 0.1

CA

CR
= 0.5

CA

CR
= 0.4

CA

CR
= 0.3

CA

CR
= 0.2

Figure 6

Effect of varying mutation nutrient threshold, Tm, on tumor mor-
phology.
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to allow for nutrient flow. This structure provides unique 
insight into the pathway to necrotic core formation and 
microinvasion, especially in regards to competitive nutrient 
depletion. The model demonstrates a clear transition from a 
fully viable spherical mass to the commonly observed three-
tiered tumor (i.e. viable rim, quiescent region and necrotic 
core). The model’s parameters determine the width of  these 
regions at the stability stage prior to invasion. The magni-
tude and length-scales of  attraction and repulsion affect 
the overall size of  the tumor while the nutrient thresholds 
specify the minimum concentration of  resources necessary 
for viability, mutation and quiescence.

Although future work is necessary to determine the appro-
priate constants for specific cases, this model functions well 
as an initial tumor development framework. A substantive 
improvement would be the introduction of  independent 
nutrient and chemical fields that influence cellular behav-
ior. Immersion of  the tumor model into such a simulated 
microenvironment that includes normal cells would provide 
immediate predictive ability about the appropriate substance 
concentration to establish a particular level of  tumor necro-
sis. The model is well adapted to this endeavor through its 
scalable implementation of  cells and chemical fields.
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