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We investigated the evolution of  viral release strategies from a computational biol-
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Introduct ion

Viruses are versatile agents with a multitude of  cell-killing 
strategies. Although the range of  cytopathic effects (extent 
of  damage to host cells) varies significantly between strains, 
there are two main modes of  viral release: bursting (lytic) 
and leaking (nonlytic). A virus is lytic if  it ruptures the host 
cell and releases progeny that infect other cells. A virus is 
nonlytic if  it exits the cell via exocytosis, with progeny bud-
ding out of  the plasma membrane until host death. There 
is ongoing biological research on the genetic determinants 
and molecular mechanism of  viral release. Our study of  
viruses is performed by mathematical modeling, rather than 
laboratory experiments. We employ the Euler-Lotka equa-
tion to simulate the life cycle of  viruses and their hosts. A 
large portion of  this paper is devoted to the derivation of  
the equation and the biological justification of  its compo-
nents. After the model is developed, we discuss the condi-
tions under which nonlytic or lytic viruses are evolutionarily 
favorable.

Background

Previous Research in Virus Dynamics
Viral pathogenesis is amenable to mathematical model-
ing and population dynamics. Past work in this field has 
answered fundamental questions about the relationship 
between host mortality and virulence (Nowak and May 81). 
Researchers have discredited the long-standing theory that 
evolution favors survival of  apathogenic viruses (Anderson 
and May, 1996). Such a faulty assumption is “pleasing to 
human sensibilities” (Levin 93), because a virus is pre-
sumably most efficient when its host remains unharmed. 
However, viruses have been shown to optimize their 
growth rate, leading to only moderate levels of  pathogen-
esis (Nowak and May, 1994). Our project differs in both 
technique (i.e. the debut of  the Euler-Lotka equation) and 
purpose. We specifically investigate the evolution of  lytic 
and nonlytic viral strategies, rather than exploring the pres-
ervation of  virulence. We address the evolution of  viral 
lifestyle—not pathogenesis—to determine which strategy 
leads to the most rapid spread of  viral progeny.

History of the Euler-Lotka Equation
The Euler-Lotka equation (Equation 1) is most often 
employed to approximate the growth rate, Γ, of  an age-
structured or age-specific population.

(1)[ ]∫
∞

Γ−

0

(x)1 = dtg(x) Fe Sx

Developed independently by Leonhard Euler and Alfred 
Lotka in the early 1900s (Neal 234), the equation includes 
such parameters as survivorship, FS(x), and fecundity, g(x), 
both varying with respect to a specific age class, x, of  the 
population. Incorporating these parameters gives the Euler-
Lotka equation an advantage over the typical logistic model 
in which growth rate is solely dependent upon population 
density (Murray 20). When the equation is solved for Γ, 
the “natural rate of  increase” of  the population is revealed 
(Lotka 111). The Euler-Lotka equation assumes that the 
population maintains a state of  long-term dynamic equi-
librium. That is, the system is stable and fairly elastic—it 
will return to normal if  perturbed (Lotka 110). Therefore 
each age class is expected to grow exponentially at the same 
rate, Γ.

Methods

Euler-Lotka Equation: Application to Virus Dynamics
Suppose that a population of  cells is infected by a virus 
that possesses one of  three proliferation strategies: nonlytic, 
lytic, or a combination of  both. The Euler-Lotka equation 
applied to virus dynamics is actually derived with respect to 
the combination strategy:

(2)[∫
∞

Γ−

0

1 = ]dxe x F (x) · g(x) + f(x) · r(x)S

Combination

Nonlytic Term Lytic Term
⎪⎪⎪ ⎩⎪⎪⎪ ⎨⎧ ⎪⎪⎪ ⎩⎪⎪⎪ ⎨⎧

⎪ ⎪ ⎪⎩ ⎪ ⎪ ⎪⎨ ⎧

An attractive quality of  Equation 2 is that its nonlytic and 
lytic elements can be separated, and the combination strat-
egy left intact. The complete derivation of  Equation 2 is in 
Appendix A. Notice that two additional parameters have 
been incorporated: the lifetime probability distribution of  
cells, f(x), and the number of  virions released upon cell 
lysis, r(x). The remaining parameters, FS(x) and g(x), closely 
resemble their demographic counterparts by representing 
the survivorship and infectivity (i.e., rate of  budding viri-
ons) of  cells, respectively. The variable x reminds us that 
the population of  cells is still age-structured. By definition, 
the population includes only infected cells; hence, each age 
class x is defined by the duration of  infection, not by the 
lifespan of  the cell.

Modeling Cell Mortality
An important aspect of  Equation 2 is the modeling of  cell 
death. Viruses are only as prolific as their hosts. Cell mor-
tality concerns two related terms: the lifetime probability 
distribution, f(x), and the survivorship function, FS(x). For 
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this experiment, the following exponential distribution is 
incorporated:

(3)τ<Δ
Δ−τ

;f(x) = ( )Δ−θ Δ−τ
Δ−−

ex
x

Here, τ is the average cell lifespan that is used to quantify 
the diverse cytopathic effects of  viruses. The Heaviside 
function is given by θ, and its time delay, Δ, represents 
the period during which all cells remain alive. From the 
moment of  viral transmission (x = 0) to the beginning 
of  cell fatalities (x = Δ), the lifetime distribution returns a 
value of  zero. Biologically, Δ measures the intensity of  cell 
immune response to an infection. For our purposes, Δ is 
independent of  τ, although one could assume a correlation 
between the immune response and cytotoxicity of  viruses. 
For simplicity, delaying the death threshold does not increase 
the probability that an average cell will live longer. Because 
f(x) is normalized to have an average lifespan equal to τ, 
Δ merely affects the delay and the magnitude of  the f(x) 
downslope (Figure 1a).

There are two special cases to consider when Δ approaches 
0 or τ:

Special Case I: Δ → 0 ⇒ (4)
→Δ 0 τ

τ−
x

elim f(x) =

Special Case II: Δ → τ ⇒ (5)( )τ−δ
τ→Δ

xlim f(x) =

In situations where a virus elicits an immediate immune 
response, Equation 4 becomes more appropriate. Cell mor-
tality is certainly not restricted to physical damage caused by 
lysing or budding, which require time for viral replication 
(Carrasco 2). Rather, viruses and their hosts have devel-
oped several mechanisms of  cell death (including apop-
tosis), whereby a damaged cell is systematically destroyed. 
This “abortive” process renders Δ quite short (Cann 192). 
Researchers have yet to attribute premature death to the 
host’s need to curtail the spread of  viral progeny or to the 
virus’s desire to hasten the transmission process (Cann 175). 
Nevertheless, viruses encode “death-promoting proteins,” 
which bring forth an immune response, often resulting in 
host mortality well before the assembly of  progeny (Abou 
El Hassan et al., 2004).

Equation 5 reduces Equation 3 to the “Dirac” delta func-
tion (offset by τ), which reflects the possibility that cell 
death is deterministic, or abrubt, rather than gradual. In 
this case, cells remain alive until x = τ, at which point they 
all die off  rather instantaneously. Case II is best applied to 

virulent, lytic viruses, which rarely establish the persistent 
or latent infections that characterize many nonlytic strains. 
Infections by viruses such as HIV, that launch a tug-of-war 
between host cell mortality and viral replication, cause cell 
death to occur in a stochastic fashion. In contrast, lytic and 
aggressive strains like the Newcastle disease virus (NDV) 
induce necrosis, apoptosis, and cell lysis almost simultane-
ously and with mild predictability (Kommers et al, 2003). 
Such a scenario is most properly modeled by the “Dirac” 
delta function.

The lifetime probability distribution, f(x), is naturally associ-
ated with the survivorship function, FS(x). The probability 
that an infected cell will survive until x is obtained by inte-
grating the probability distribution from an arbitrary x to 
infinity:

(6)( )Δ−θ−Δ−θ= Δ−τ
Δ−

−∞

∫ xe)x(f(t) dt = 1+(x)F
x

x

S

The lifetime probability distribution, f(x), as well as the 
resulting survivorship curve, FS(x), is depicted in Figure 1.

Figure 1
Graphical Demonstration of f(x) and FS(x). Figure 1a shows the 
lifetime probability distribution of an infected cell for Δ = τ/2, Δ = 0 
(Case I), and Δ = τ (Case II). Figure 1b shows the cell survivorship 
curves, each representing the probability of surviving until an arbi-
trary age class, x, for three different values of Δ.

Modeling Cell Infectivity
We assumed that the number of  viruses manufactured with-
in infected cells follows a linear law. Most evidence points to 
linear viral kinetics, although there are indications of  expo-
nential production of  virions (Yasuda et al. 288, Mangor 
et al. 2549). Live cells infected by nonlytic viruses have a 
natural infectivity, budding a constant number of  productive 
viruses (those that are able to infect other cells) per second, 
given by gN(x), where the subscript “N” denotes “nonlytic.” 
The rate of  accumulation of  virions within the host cell is 
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given by gL(x), where “L” denotes “lytic.” Integrating g(x) 
from the beginning of  virus assemblage until cell death 
gives r(x), the virulent capacity or infectivity of  lysed cells:

Rate of  egress (budding): (7)( )λ−θ⋅ x(x) = c1Ng

Rate of  accumulation: (8)( )λ−θ⋅ x(x) = c2Lg

Capacity of  lysed cells: (9)( )λ−⋅∫ x(t) dt = cgr(x) = 2

x

0
L

Here, c1 and c2 are the magnitudes of  the budding and 
accumulation rates, respectively. The time delay, λ, has dif-
ferent meanings for nonlytic and lytic viruses. λN represents 
the latent period, the time from infection to the appearance 
of  the first extracellular virus. λL symbolizes the eclipse 
period, the time from infection to the appearance of  the 
first intracellular virus (Mediratta & Essani, 93). For our 
project, it was assumed that λN = λL, although we devote a 
small portion of  work to the situation where λN ≠ λL. Unlike 
Δ, there is no reason to investigate the case where λ = 0, 
because a virus without a latent or eclipse period is unlikely. 
Introduction of  λ allows us to quantify the previous discus-
sion regarding cell death induction. When the cell expires 
before maturation of  the viral progeny, we say that Δ < λ.

The Functional Euler-Lotka Equation
Our first step was to split Equation 2 into its lytic and 
nonlytic terms. Then, substituting Equations 3, 6, 7, and 
9 into each component of  Equation 2 yields Equations 10 
and 11:

Nonlytic: [ ]∫
∞

Γ−

0
N

Sx dx(x)(x) · gFe1 =

(10)( ) ( )∫
∞

Δ−τ
Δ−

−Γ− ⎥
⎦

⎤
⎢
⎣

⎡
Δ−θ−Δ−θ+⋅λ−θ

0

x
x

1 dxxe)x(1ex1 = c

(11)( ) ( )∫
∞

Δ−τ
Δ−

−Γ− ⎥
⎦

⎤
⎢
⎣

⎡
⋅Δ−θ⋅λ−

Δ−τ
0

x
x2 dxexex

c
1 =

Lytic: [ ]∫
∞

Γ−

0

x dxf(x) · r(x)e1 =

The expressions obtained from solving Equations 10 and 
11 are in Appendix B. These are graphed numerically and 
presented in the Results portion of  this paper. However, 
before presenting the data, a few parameters must be iden-
tified.

The Δ-λ Relationship. There is a competition between Δ, the 
period during which all cells are alive, and λ, the latent or 
eclipse stage of  the virus life cycle. From a biological per-
spective, two situations are equally viable in either lytic or 
nonlytic viruses: λ > Δ or λ < Δ. The former describes a 
population of  infected cells that begins to die from immune 
response before viral progeny are produced. The latter 
describes a population that only begins to suffer fatalities 
after the progeny is produced.

The Δ-τ Relationship. An assumption with Equation 3 (the 
lifetime probability distribution) is that τ must be greater 
than Δ. With all the cells alive throughout Δ, the average cell 
lifespan cannot fall within this window of  time. The τ > Δ 
relation manifests itself  clearly in the succeeding graphs. 
Numerical results are altered such that any Γ falling within 
the τ < Δ region is set to zero and the curves are often trun-
cated, depending on the value of  λ.

The Combination Strategy. The right hand sides of  Equations 
10 and 11 can be added and set equal to 1, resulting in an 
expression for the unification of  both nonlytic and lytic 
techniques. Because both c1 and c2 are included within the 
combination expression, a virus using both budding and lys-
ing techniques would appear to have a competitive advan-
tage. We presume that this is not the case. That is, the pro-
duction rates must be scaled such that c1 + c2 = K, where 
nonlytic viruses have rate c1 = K, and lytic viruses have 
rate c2 = K. Evidence for combination strategies in which 
a virus first diffuses out of  the cell and then bursts the 
remaining progeny is rarely documented. A few researchers 

Table 1
Summary of parameters and their descriptions used in this paper.

Parameter Description Parameter Description

x age class of cell 
population

λ latent/eclipse 
stage of viral life 
cycle

τ average cell 
lifespan

Δ severity of im-
mune response

Γ virus proliferation 
rate

gN(x) rate of egress 
(budding) of 
virions

f(x) lifetime probabil-
ity distribution

gL(x) rate of accumula-
tion of virions

FS(x) cell survivorship 
function

r(x) infectivity of lysed 
cells

θ Heaviside func-
tion

c1 magnitude of 
budding rate

δ “Dirac” delta 
function

c2 magnitude of ac-
cumulation rate
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have recorded cases within the family Reoviridae in which 
viral progeny are released only a few hours postinfection, 
well before cell lysis (Cromack et al., 1971).

Special Cases I and II. As before, two special cases result 
from taking the limit of  Equations 10 and 11 with respect 
to Δ. Both equations are condensed under these unique 
circumstances and their expressions are in Appendix B. 
Case I (Δ → 0) requires that λ be greater than Δ, otherwise 
the viral progeny would be manufactured before the cells 
are infected. Case II (Δ → τ) calls for λ to be less than 
τ, otherwise, all the cells would be dead from immune 
response before the virus has the opportunity to assemble 
its progeny.

Numerical Analysis
Equations 10 and 11 do not result in explicit expressions; 
therefore, most subsequent information stems from graphi-
cal analysis of  Γ. We numerically solved for Γ, the viral pro-
liferation rate, as a function of  τ, the average cell lifespan. 
This task was accomplished with the use of  MATLAB® 7.0. 
From the resulting figures we determined the conditions 
under which Γ is maximized or minimized.

Results

The main goal of  our calculations was to compare the pro-
liferation rates of  nonlytic and lytic viruses, as well as inves-
tigate two special cases. Recall that Case I (Δ → 0) reflects 
the scenario in which cells elicit an immediate immune 
response. Case II (Δ → τ) models the instantaneous death 
of  cells reacting to a destructive, highly pathogenic virus. 
Figure 2 presents a comparison of  the nonlytic and lytic 
strategies under normal conditions as well as for both spe-
cial cases defined previously. We hold λ, c1 and c2 constant 
to prevent either strategy from receiving an advantage. 
Notice that the nonlytic virus exhibits greater growth rates: 
ΓN > ΓL for all τ. This result is especially apparent for large 
τ where ΓL asymptotically approaches zero. In contrast, ΓN 
reaches a plateau rather than a decline. Indeed, calculation 
of  τ → ∞ reveals a carrying capacity solely determined by λ 
and c1: Γ= c1e-Γλ . Even at peak viral proliferation, ΓL never 
surpasses ΓN under equal conditions.

Figure 2 also shows variation in τ-intercepts where Г = 0. 
Either the τ-intercepts are dissimilar or they are nonexis-
tent. The latter can be attributed to the condition where 
Δ > τ and the curves are truncated, with no τ-intercept 
established. If  a τ-intercept does exist, its expression is 
given by τ = (1+c1 λ)/c1 , except in nonlytic Case I (Δ → 0), 
which possesses a unique τ-intercept given by a different 

expression (1=c1τe-λ/τ). Another outcome of  Figure 2 is the 
behavior of  the lytic Case II curve as τ → ∞, which falls to 
zero much faster than the others.

Figure 3 illustrates how each viral lifestyle is affected by 
changes in the immune response of  the cell, D, or the 
latent/eclipse period of  the viral life cycle, λ. Figure 3 
shows that an increase in Δ results in both a decrease and 
delay in the maximum proliferation rates, especially for lytic 

Figure 2
Nonlytic and Lytic Proliferation Rates with General and Special 
Cases I and II. These two diagrams, in logarithmic scale, project 
budding and lysing strategies side by side for constant λ, c1 and c2. 
Equations 10 and 11 depend on an arbitrary Δ > 0, so we choose 
Δ = 5, and truncate the curves appropriately.

Figure 3
Virus Proliferation Rates with Varying λ and Viral Strategies for Two 
Values of Δ. The combination production rates are scaled down 
(c1' = 0.5, c2' = 0.5) to prevent an unfair competitive advantage. 
Variation in line style is employed to portray three values of λ, stra-
tegically selected for investigation of the Δ-λ relationship.



12 T h e  U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l 

C O M P A R I N G  T H E  E V O L U T I O N A R Y  S I G N I F I C A N C E  O F  N O N L Y T I C  A N D  L Y T I C  V I R U S E S

viruses. An increase in λ produces lower proliferation rates 
and causes a loss of  low τ-values.

Discussion

Overall Implications of Graphical Results
Perhaps the most significant outcome of  Figures 2 and 3 is 
that nonlytic viruses exhibit greater growth rates: ΓN > ΓL 
for all τ. The success of  a lytic virus is correlated with cell 
mortality; hence, a nearly immortal host cell will prohibit 
the spread of  viral progeny. A nonlytic virus infecting the 
same host would have greater reproductive fitness. For 
this reason, we see the nonlytic virus proliferation rate 
reaching a plateau rather than a decline. Even at peak viral 
proliferation, ΓL never surpasses ΓN under equal conditions. 
Yet many picornaviruses and adenoviruses also lyse their 
host (Voyles 225). The evolutionary gain from cell lysis is a 
mystery recognized by few researchers (Carrasco 107). We 
provide a preliminary solution through the adjustment of  
certain variables that give a competitive advantage to the 
lytic virus.

Special Cases I and II
Nonlytic Case I (Δ → 0) has a unique τ-intercept at Γ = 0 
(see Figure 2), which is a mathematical artifact allowing 
viruses to escape early from cells with short lifespans.

Nonlytic Special Case I: (12)τλ−τe1 = c1

All Other Cases (λ > Δ): (13)22 c)λ= (1 + cτ

τ-intercepts do not exist for λ < Δ due to curve truncation 
(Figure 2 shows this happening for λ = 2, Δ = 5). The end 
result is a budding virus with the ability to assemble prog-
eny for short cell lifespans. However, Figure 2 reveals that 
nonlytic Case I produces lower overall rates of  proliferation 
for a wide range of  τ values.

Lytic Case II possesses some fascinating properties as well. 
The manner in which this virus asymptotically falls to zero 
as τ → ∞ is unique (Figure 2). The rate of  decline is faster, 
caused by the location of  τ in the exponential, in contrast 
to the simple τ/τ2 competition exhibited by all other lytic 
curves (see Appendix B). Earlier, we proposed that Special 
Case II suited highly cytotoxic viruses in nature. Figure 2 
confirms that viruses able to lyse an entire population of  
cells function best when the host lifespan in short. As the 
lifespan grows longer, their efficiency decreases dramati-
cally.

Evolution of the Latent Infection
Limiting our attention to the direct consequences of  λ varia-
tion, we find 2-dimensional curve shifting (Figure 3). As λ 
lengthens, the virus proliferation rate deteriorates (vertical 
shift) and the τ-values required to return even a minimal 
proliferation rate are increased (horizontal shift). From a 
biological perspective, a long latent or eclipse period can be 
caused at various points in the viral replication cycle. In the 
case of  the Measles virus, replication of  genetic material 
and protein synthesis is quick, but maturation of  virions is 
protracted (Portner & Bussell 46). In Simian Virus 40, entry, 
transit and uncoating is swift, but viral gene expression is 
slow (Clever et al. 7333). Regardless of  how the λ delay is 
spent, cells that die quickly do not return any proliferation 
rate because they expire before the viral progeny is synthe-
sized.

The shifting of  the curves towards the right with increased 
λ is fairly intuitive and makes an important evolutionary 
point. Figure 3 provides evidence that latent infections, like 
those established by the Herpes virus, are characterized by 
strong host cell survivorship (Ruf). Viruses that allow their 
hosts to survive and live long are generally nonlytic. In 
contrast, lytic viruses deserve no consideration for large τ, 
even after certain variables are adjusted (see “Giving Lytic 
Viruses an Evolutionary Advantage,” below).

Now that we have established the connection between long 
host cell lifespans and nonlytic viruses, we can address the 
findings that lengthening λ decreases proliferation rate for 
all τ. Figure 3 provides an argument against the evolution-
ary advantage of  a latent infection for nonlytic viruses. Peak 
nonlytic proliferation rate (Γ=c1e-Γλ) is completely reliant 
on λ. Γ diminishes as λ lengthens. Therefore, we propose 
that latent infections have evolved not due to propagation 
efficiency, but for other reasons. For instance, suppose that 
viruses establish latent infections such that they can “wait” 
for the right environmental conditions to release progeny.

Δ-Sensitivity
Curve truncation is one effect of  Δ variation, but let us 
now focus on Δ-sensitivity. That is, the curvature and local 
maxima of  Figure 3 change when Δ is altered. Since none 
of  the limiting expressions depend on Δ, these transforma-
tions are not easy to quantify. The lytic virus has greater Δ-
sensitivity than its nonlytic counterpart, although the effects 
are similar. Viewing the lytic curves alone for constant λ, c1 
and c2, we witness both a decrease and delay in maximum 
proliferation potential for lytic viruses. The nonlytic curves 
tend to reach their maximum later; however, the final pla-
teau remains unchanged. These changes in curve structure 



13T H E  U C I  U N D E R G R A D U A T E  R E S E A R C H  J O U R N A L

A m a n d a  J a n e s i c k

occur because an immediate immune response (small Δ) 
requires that the cell population live longer, on average, for 
the virus to yield maximum proliferation rates. Of  course 
these rates can never surpass those obtained by viruses that 
pass the immune system undetected. A population of  cells 
infected by such a virus results in larger Δ, allowing the 
virus to take advantage of  the entire cell population.

Giving Lyt ic  V i ruses an 
Evolut ionar y  Advantage

All parameters being equal, we have discovered that ΓN > ΓL 
for all τ. This means we must unearth the techniques that 
lytic viruses have acquired to survive throughout the evo-
lutionary process. Earlier discussions have deduced certain 
conditions that maximized viral proliferation rate. By alter-
ing variables like λ, τ, c1, and c2, we can begin to theorize 
how lytic viruses may have evolved. Nonlytic and lytic 
viruses behave differently in nature; hence, assumptions 
like equal production rates (c1 = c2) or equal latent/eclipse 
periods (λN = λL) are unfair. Therefore, we focus on mak-
ing the lytic virus evolutionarily advantageous for relatively 
short τ.

The τ Lytic Advantage
For all parameters being equal, we discover that there exists 
a range of  lytic τ values (τL) such that ГL > ГN for certain 
nonlytic τ values (τN). The τ lytic advantage occurs under 
relative, not exact circumstances, although two conditions 
are required: Δ must be less than λ, and the lytic virus must 
have lower cytotoxicity, τL > τN (the host cell infected by 
lytic viruses has a longer lifespan). Figure 4a demonstrates 
this effect. Of  course experimental evidence does not sup-
port the tendency of  lytic viruses to be less cytopathic. For 
example, ebola is a destructive, cytotoxic virus and its mech-
anism of  release is cell lysis, not budding (Baize et al., 2000). 
Hence, we conclude that variation in other parameters must 
be at work. Indeed, changing λ, Δ, c1, and c2 in lytic versus 
nonlytic viruses alters the logic of  the τ advantage signifi-
cantly. That is, we begin to find that the reverse is true: lytic 
viruses become more cytopathic to gain an advantage.

The λ Lytic Advantage
We now consider the scenario where λL ≠ λN, and truly dis-
tinguish between the nonlytic latent period (time until extra-
cellular appearance of  virions) and the lytic eclipse period 
(time until intracellular appearance of  virions). The eclipse 
period always occurs sooner because accumulating virions 
within the cell is quicker than extrusion of  virions through 
the plasma membrane (Cann 106). In addition, lytic viruses 
are generally naked in structure, consisting entirely of  

genetic material and protein. Most nonlytic viruses require 
the synthesis of  lipids and glycoproteins to build extensive 
envelopes (Cann 40). The simplicity of  lytic structure allows 
progeny to be assembled faster; hence, we can safely assume 
λL < λN.

Figure 4b demonstrates the λ lytic advantage by comparing 
three values of  λL to a fixed and larger λN curve. In addition, 
Figure 4b identifies three points along the nonlytic curve for 
discussing which values of  τL promote the greatest benefit. 
As an example, suppose that a nonlytic virus has a lifespan 
given by Point 1. Comparing all three λL curves to the ГN 
obtained at Point 1, we find that there always exists some 
τL such that ГN < ГL. As λL increases and approaches λN 
the restriction τL > τN must hold (exemplified for λL ≥ 5 in 
Figure 4b). Points 2 and 3 can be analyzed similarly. Notice 
at Point 3, only λL = 1 has the ability to compete with the 
nonlytic curve, and achieves a proliferation rate superior to 
ГN for any τN value.

Figure 4
τ and λ Lytic Advantages Compared to a Nonlytic Competitor. Figure 
4a illuminates arbitrary values of τN and τL whereby ГL > ГN. The 
dotted lines demonstrate the case where Δ > λ, such that the lytic 
advantage cannot be conferred. Figure 4b shows three different λL 
values each to be compared with three points along the λN curve.

The c2 Lytic Advantage
Adjusting the values of  c1 and c2 shifts all curves vertically. 
For the same reason we assumed that lytic viruses have short 
λ, we also propose that lytic viruses produce progeny at a 
faster rate. This occurs because accumulating viruses within 
the cell is physically easier than budding. While adjusting c1 
and c2 , we can also take another look at the combination 
virus. We assume that the combination virus accrues prog-
eny at a certain rate and leaves the cell spontaneously at a 
different rate. Figure 5 demonstrates the c2 lytic advantage. 
Also, addressing τ values we find that τL > τN when c1 = c2. 
As mentioned above, the observation that lytic viruses are 
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required to be less cytopathic is not realistic. Hence, we 
conclude that c1 < c2 because it places the greatest lytic 
proliferation rate where τL < τN.

Conclusion

The mission of  this project was to explore evolutionary 
pressures acting on lytic and nonlytic viruses, using the pro-
liferation rate (Г ) as a measure of  fitness. The Euler-Lotka 
equation creates a reasonable modeling base, yielding valu-
able graphical results. Originally, we found that a nonlytic 
virus exhibits greater proliferation rates than a lytic virus 
and that a lytic virus only attains an advantage when it is less 
cytopathic (large τL). Since this is improbable (lytic infec-
tions are generally more cytotoxic), parameters like λL and c2 
were adjusted to give the lytic virus an advantage. Reducing 
λL and increasing c2 were realistic modifications, imparting 
the less complex structure of  the lytic virus to the model. 
Thus, shortening the eclipse stage, lowering the cytotoxicity, 
and amplifying viral accumulation rates conferred an evolu-
tionary advantage to the lytic virus.

In addition to findings that satisfied the main hypothesis, 
other interesting results were uncovered. Investigation of  
the latent period of  a nonlytic virus (λN) confirmed the 
biological reality that latent infections are characterized by 
strong host cell survivorship. Moreover, we found that a 
latent infection evolves for reasons other than high prolifer-
ation rates (e.g., ability for the virus to wait for proper envi-

ronmental conditions). Analysis of  Δ-sensitivity revealed 
that a virus eliciting a strong immune response from the 
host should be less cytopathic. This implies that a virus can 
afford to be more toxic to its host cell if  the host’s immune 
system cannot detect it.

Future work will expand the model to include more biologi-
cal details. For example, we will have the immune system 
play a more dynamic role in the prevention of  virus prolif-
eration. Above, the time delay, ∆, was used to represent the 
speed of  the host’s immune response to an infection. This 
affected the shapes of  the cell lifespan distribution and the 
survivorship curve. Our new model will be constructed 
such that the immune system detracts from the rate of  accu-
mulation and exit of  virions. Instead of  the cells’ releasing a 
fixed number of  viruses, antibodies will kill the viruses at a 
specific rate. Our hypothesis is that the lytic virus will hold 
the advantage in this situation. A bursting cell can produce 
a large amount of  progeny in a short time interval, perhaps 
dodging the full strength of  the immune system.

Computational biology is an emerging, vastly interdisciplin-
ary field of  research. Using mathematics to model intricate, 
nonlinear biological systems serves to interpret diverse 
phenomena in nature. Combined with advancements in 
computer technology, the field provides insight and solidity 
to modern biological theories. Research in virus dynam-
ics holds great potential, especially in the development of  
antiviral drugs. This area of  medical science has a history 
of  inefficiency with the overuse of  trial and error methods. 
The advent of  DNA sequencing has improved the effective-
ness of  preventative vaccines significantly. However, due to 
the complexities of  genetic analysis, antiviral research can 
benefit from the clarity of  a modeling approach. We expect 
our results to provide information that can help others pro-
duce drugs to reduce viral proliferation rates in either lytic 
or nonlytic infections.

Appendix  A:  Der ivat ion of  the 
Euler-Lotka Equat ion

Suppose that a population of  cells is infected by a virus 
at time t. We will only give credence to viruses that actu-
ally manage to infect other cells. Let V(t) = the number 
of  productive viruses released by the cells. The population 
of  infected cells is age-structured, and each age class, x, is 
defined by the duration of  infection. In general, live cells 
release a certain amount of  virions (via budding), while 
dying cells release a different amount (via lysing) upon 
death. The number of  viruses released from live cells at 
time t is the product of  A(x, t), the number of  cells alive 

Figure 5
The c2 Lytic Advantage Compared to a Fixed Nonlytic Competitor. 
All variables are held constant except c2, which is adjusted until 
ΓL > ΓN for short τ. The c1 and c2 values are not additive in the com-
bination virus. Rather, the relationship between c1 and c2 has been 
scaled to reflect a general increase in the c2 component.
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within a specific age class, and g(x), the rate of  egress of  
virions, summed over all age classes:

(nonlytic) (A1)∑
=0x

N A(x,t) · g(x)(t) =V

The number of  viruses released from lysed cells at time t 
requires that we multiply A(x, t) by the probability, h(x), that 
a cell dies within its age class. Viruses that engage the lys-
ing strategy are not associated with a rate like g(x). Rather, 
they are liberated from the cell, releasing a finite number of  
virions, r(x). The following summation is obtained:

(lytic) (A2)∑
x=0

L A(x,t) · h(x) · r(x)(t) =V

Equations A1 and A2 are added together to give the total 
number of  productive viruses:

(A3)[ ]∑=
x=0

g(x) + h(x) · r(x)A(x,t))t(V

For a population of  infected cells, the hazard function 
ensures that we only count dead cells that are lysed within 
their age class and exclude those that had expired previously 
(Komarova). Given the cells’ lifetime probability distribu-
tion, f(x), and their corresponding survivorship, FS(x), the 
hazard function is simply the ratio of  the two:

(A4)(x)F
f(x)

h(x) = S

Above, we defined A(x, t) as the number of  cells alive at 
time t within a specific age class, x. The viability of  the cell 
population is a measure of  both new viral infections and the 
cells’ ability to overcome the infection. Therefore, A(x, t) is 
redefined as the number of  new infections occurring at a 
previous time, t − x, multiplied by the cell’s chance of  sur-
vival, FS(x), until time t.

(A5)(x)A(x,t) = V(t - x) · FS

Substituting Equations A4 and A5 into Equation A3 we 
have:

(A6)[ ]∑
x=0

S(x) · g(x) + f(x) · r(x)FV(t - x)V(t) =

Dividing both sides by V(t):

(A7)[ ]∑
x=0

S (x) · g(x) + f(x) · r(x)F
V(t)

V(t - x)1 =

We assume that each age class grows exponentially with 
time, V(t)∝eΓt , where Γ is the reproductive rate:

(A8)[ ]∑ Γ−

x=0

Sx (x) · g(x) + f(x) · r(x)Fe1 =

This expression makes sense because more viruses are pro-
duced at a later time, thus the ratio of  V(t − x) to V(t) will 
yield negative growth. Allowing the age classes to be subdi-
vided into infinitesimally small categories, the Euler-Lotka 
equation for virus proliferation is finally obtained:

(A9)[ ]∫
∞

Γ−

0

Sx dx(x) · g(x) + f(x) · r(x)Fe1 =

Appendix  B:  Solut ions to the Euler-
Lotka Equat ion

The expressions obtained from solving Equations 10 and 
11 are found here:

(B1)( )
( )

( ) ( )
1

,max),max(
11 ece

1
cec1 = ),max( Δλ⋅Γ−Δ−τ

Δλ−Δ+Δλ⋅Δ−τΓ−
λΓ−

Γ
−⋅

+Δ−τΓ
Δ−τ+

Γ

Nonlytic: (10)( ) ( )∫
∞

Δ−τ
Δ−

−Γ− ⎥
⎦

⎤
⎢
⎣

⎡
Δ−θ−Δ−θ+⋅λ−θ

0

x
x

1 dxxe)x(1ex1 = c

Lytic: (11)( ) ( )∫
∞

Δ−τ
Δ−

−Γ− ⎥
⎦

⎤
⎢
⎣

⎡
⋅Δ−θ⋅λ−

Δ−τ
0

x
x2 dxexex

c
1 =

(B2)
( )

( )
ΓΔ−

ΓΔ−τΓ+
λ−τ+ΓΔ−ΔτΓ+τΓλ−ΓΔλ · e

1
c

1 = 2

2
2

Two special cases result from limiting expressions with 
respect to Δ. Equations B1 and B2 are condensed under 
these unique circumstances:

Special Case I: Δ → 0, λ > Δ ⇒ (B3)
( )

( )⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

τΓ+
λ−τ+τΓλ−=

⋅
+τΓ
τ=

⎟
⎠
⎞

⎜
⎝
⎛

τ
+τΓ

λ−

2
2

1
1

1
c

1Lytic:

e
1

c1Nonlytic:

Special Case II: Δ → τ, λ < τ ⇒ (B4)
[ ]

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

λ−τ=

−
Γ

=

τΓ−

τΓ−λΓ−

ec1Lytic:

eec1Nonlytic:

2
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