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DNA is not only the fundamental information carrier of life, it can
be used to perform logic functions as well. In 2004, Ehud Shapiro
constructed a DNA computer model capable of diagnosing can-
cerous activity within a cell. Shaoshan’s project extends Shapiro’s
model to the point where the DNA computer can not only diag-
nose cancerous activity in cells but also (at least theoretically) elim-
inate the cancer cells and leave healthy cells untouched. Shaoshan’s
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can lead.
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The DNA-based Killer Automaton (DKA) is an innovative nanomedicine for can-
cer treatment. Equipped with an internal DNA computing algorithm, DKA

detects cancer by checking oncogenic mRNA sequences in cells. If these cancer
markings are detected, DKA releases cytotoxic materials to destroy the cancer cell. In
addition, due to the bystander effect, the cytotoxic materials are able to propagate only
to the cells that express cancerous behavior, thus destroying the malignancy with
minimal side effects. To predict the efficacy of DKA in cancer treatments, a software
model has been created to simulate the DKA mechanisms in an artificial multi-cell
environment. The results obtained from the simulations show that the efficacy of
DKA is linearly dependent on both the amount of DKA injected into the cancer cell
group and the density of homologous gap junction intercellular communication
(GJIC) channels. Also, the results verify that DKA does not have to enter all cancer
cells to destroy malignancies. Depending on the density of homologous GJIC chan-
nels, DKA can enter a certain percentage of cancer cells, and propagate to all other
cancer cells through the bystander effect. The result is complete tumor regression.
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Introduct ion

Cancer, a type of disease characterized by uncontrolled
growth and spread of abnormal cells, has a very high fatal-
ity rate. It is a leading cause of death in the U. S., following
only heart disease. According to estimates by the American
Cancer Society (Cancer Facts and Figures 2005), 570,280
Americans are expected to die of cancer this year, more
than 1,500 people every day. This constitutes one out of
four deaths in the U. S. The National Institutes of Health
estimated the overall cost of cancer treatments exceeded
$69.4 billion for 2004 (Cancer Facts and Figures 2005).
Unfortunately, even with this level of financial commit-
ment, major cancer therapies, including surgery, radiation,
chemotherapy, hormones, and immunotherapy, cannot
always accurately target cancerous cells, and thus often
introduce more lethal side effects and/or fail to provide a
cure. While an effective cure has remained elusive, new
methods drawn from fields such as nanotechnology and
DNA computing may hold the key for novel approaches.

Recently, Benenson et al. have proposed using the comput-
ing power of DNA/RNA to diagnose and cure genetic
mutation diseases such as cancer (2004). The basic idea of
this approach is that, by checking mRNA strands in cells,
DNA automata can detect the presence of cancer indicators
and release single-stranded DNA cancer suppressors (DNA
antisense) if all relevant cancer indicators have been detect-
ed. One major disadvantage to this approach is that the
DNA automaton does not cure cancer; instead, it blocks
cancer expressions at the translation level by using DNA
antisense. This requires cancer patients to take the expen-
sive DNA-automaton medicine periodically, which may not
be practical.

We propose an alternative automaton model, the DNA-
based Killer Automaton (DKA), which has the potential to
completely destroy a malignancy in one treatment. DKA
has two advantages that make it a strong candidate for can-
cer therapy. First, unlike the antisense therapy, which blocks
the translational expressions of cancer cells, DKA has the
potential to eliminate all cancer cells, completely destroying
the malignancy. Second, unlike other therapies that intro-
duce serious side effects, DKA targets the mutation site
without damaging nearby healthy cells, which minimizes
side effects. This paper explains how DKA detects and
destroys malignancies with great efficacy and minimal side
effects, and presents a software model that simulates the
DKA mechanism in a multi-cell environment.

Background

This project is based upon the fundamental work of
Benenson et al., who initially described a molecular automa-
ton model (MAM) capable of infiltrating and detecting can-
cerous cells. It also takes discoveries into account that are
related to the interactions between cancerous cells and
healthy cells. The MAM applies antisense cancer gene ther-
apies, which are based on the identification of oncogenes
and aim to suppress the expression of specific oncogenes
(Jansen et al. 2002). Antisense oligonucleotides are short
single-stranded DNA (ssDNA) that are complementary to
cellular mRNA that express cancer. In cells, antisense DNA
binds to oncogenic mRNA and thereby hinders abnormal
cell growth. The MAM contains three major parts: an anti-
sense ssDNA, which is folded into a hairpin structure; a
cancer detector, which is a double-stranded DNA (dsDNA)
that locks the antisense ssDNA; and restriction enzymes,
which are used to cut at cancer detection sites (Figure 1).

When a cell becomes cancerous, its expressed mRNA
exhibits cancerous behavior and thus contains different can-
cer markers (Sidransky 2002), which are RNA short strands
that are 7-base long. The cancer detector in the MAM is
composed of a double-stranded DNA that has a short sin-
gle-stranded DNA (ssDNA) attached to its left side. The
double-stranded DNA has two parts: the upper single
strand contains different DNA segments that are comple-
mentary to a series of mRNA cancer indicators, while the
lower part locks the upper part so that the upper segments
cannot function until needed. The ssDNA is complemen-
tary to the first cancer indicator in mRNA. If the first indi-
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Figure 1
Benenson et al.’s Molecular Automaton: this automaton is com-
posed of three parts: 1) a DNA cancer detector, 2) a restriction
enzyme that cuts the cancer detection site, and 3) a DNA anti-
sense that blocks cancer expression after cancer is detected.



cator binds to the ssDNA, the restriction enzyme FOKI
(Blanche et al. 2002) cuts the binding site and the lower part
of the next DNA segment, opening the upper part of the
next DNA segment. This new single-stranded DNA seg-
ment checks whether the second cancer indicator is present
in cellular mRNA. By repeating this process, if all cancer
indicators have been detected, all segments of the cancer
detector will have been cut, and the antisense DNA hairpin
is released and unfolded. Consequently, the automaton
functions as a drug that blocks the oncogenic expression in
cellular mRNA.

The Bystander Effect
The bystander effect is a biological phenomenon observed in
apoptotic gene therapy, in which cytotoxic materials, such as
ganciclovir triphosphate (GCVTP), are produced in some
of the host cancer cells (Pitts 1994). In addition to killing
these host cancer cells by inhibiting DNA synthesis in the
S cycle, GCVTP is able to propagate to neighboring non-
host cancer cells, exerting toxic effects on these cells as well.
This propagation of toxicity through the bystander effect is
extremely effective. Indeed, it has been shown that if
GCVTP enters as few as 10% of cancerous cells initially, it
can propagate and cause complete tumor regression after
propagation (Culver et al. 1992).

Homologous gap junctional intercellular communication
(GJIC) is the main contributor to the bystander effect (Yang et
al. 1998). As Figure 2 shows, homologous GJIC channels are
protein channels (connexins) that connect the cytoplasm of
cells in the same cell line, so that direct diffusion from cyto-
plasm to cytoplasm can occur (Duflot-Dancer et al. 1997).
GJIC channels are able to transport chemicals with a maxi-
mum molecular weight of 1,000 daltons (Da) (Sompson et

al. 1977). Since the molecular weight of GCVTP is 496 Da,
GCVTP is able to propagate to neighboring cells through
GJIC channels. In cells, GCVTP does not inhibit eukaryot-
ic cell polymerases, and can thus be used as a substrate for
DNA synthesis. Incorporating GCVTP into the DNA of
dividing cells results in DNA chain termination and, conse-
quently, cell death.

Proposed Model :  DNA-Based
Ki l ler  Automaton

DKA combines the MAM developed by Benenson et al.
with the apoptotic gene therapy bystander effect. It destroys
cancer malignancies in three steps: cancer detection, toxici-
ty propagation, and programmed cancer cell death
(Figure 3). Similar to the proposed MAM, DKA detects
cancer by checking mRNA strands in cells. However, when
cancer indicators are detected in a cell, instead of releasing
DNA antisense to block oncogenic expressions at the trans-
lational level, DKA releases cytotoxic materials to kill the
cancer cell. As a result of the bystander effect, the efficacy of
DKA is increased so that it has the potential to cause com-
plete tumor regression.

The structure of DKA is similar to that of the MAM
(Figure 4). However, instead of DNA antisense that blocks
translational expression, cytotoxic material GCVTP is
placed in the hairpin-structured “drug” section. As with the
MAM, DKA uses the algorithm in Figure 5 to detect can-
cer. When DKA enters a cancer cell, the single-stranded
DNA portion of the automaton binds to the first cancer
indicator on the mRNA strand. Next, the restriction
enzyme FOKI recognizes the binding site and cuts it,
unlocking the second single-stranded DNA segment that is
complementary to the second cancer indicator on the
mRNA strand. Likewise, if all cancer indicators are detect-
ed, the last segment of the DNA double strand is cut,
releasing GCVTP to kill the cell.
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Figure 2
The Bystander Effect: cytotoxic chemicals carried by DKA are able
to propagate from one cancer cell to another through the gap junc-
tional intercellular communication (GJIC) channels.
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Algorithm of DNA-based Killer Automata



Due to the bystander effect, GCVTP released in one cancer cell
is able propagate to neighboring cancer cells through
homologous GJIC channels, eliminating those neighboring
cells as well. GCVTP is not able to propagate to healthy
cells due to the lack of GJIC channels, thus minimizing side
effects. Additionally, if DKA enters a healthy cell acciden-
tally, it does not harm the cell—without a complete set of
cancer indicators, GCVTP is not unlocked.

The DKA model is only one part of a potential cure for
cancer; a number of other challenges must be overcome as
well. This paper focuses on the software simulation of the

DKA mechanisms, assuming that the other issues have been
solved.

Tools and Methods

A software model has been established to simulate the
DKA mechanism in an artificial multi-cell environment.
The main tool used for this simulation is the Sun Java 2
Platform Standard Edition Software Development Kit
(SDK), which serves as the compiler of Java simulation
objects.

In this simulation, each component of DKA is constructed
as a Java object and assigned specific chemical and physical
properties, such as DNA/RNA base complementarities.
There are three levels of objects in this simulation
(Figure 6). The top level (Level 1) object is Experiment,
which is an artificial multi-cell environment for the interac-
tions between the two median level (Level 2) objects, DKA
and Cell. Each Cell object contains multiple copies of two
bottom level (Level 3) objects, GJIC and mRNA. GJIC
objects are communication channels between cells that are
able to transfer GCVTP. The mRNA objects serve as the
identifiers of the host cell, and are used to decide whether
the cell is cancerous or not.

Each DKA object also contains two Level 3 objects,
Enzyme and GCVTP. Enzyme objects are used to cut bind-
ing sites after the cancer detector of a DKA object binds to
a cancer indicator of an mRNA object. If the Cell object is
cancerous, GCVTP objects are released to kill the host Cell
object after cancer is diagnosed. Also, GCVTP objects are
able to propagate from one cancer Cell object to another
through the GJIC objects that connect these two Cell
objects.

Creation of Cell Groups:
Two parameters, the number of cells, n, and cancer cell per-
centage, p, are used to generate cell groups. First, the pro-
gram generates two mRNA objects, the cancerous and
healthy mRNA. Then the program initializes n Cell objects
and assigns cancerous mRNA to p * n of them. The rest are
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While not end of the double strand
 Do If cancer indicator presents in the mRNA strand
  Then bind to the cancer indicator
   Cut the binding site with FOKI enzyme
Release GCVTP
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Figure 5
DKA Cancer Detection: the DKA cancer detector checks the pres-
ence of every cancer indicator in the mRNA strands. If all cancer
indicators are detected, then cancer is diagnosed in the cell.
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Figure 6
Architecture of the computer simulation model
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Figure 4
DNA-based Killer Automaton: DKA has a structure similar to that of
the molecular automaton model, proposed by Benenson et al. and
shown in Figure 1. However, instead of DNA antisense that blocks
cancer expression, DKA carries cytotoxic chemical, which is able to
kill the cancer cell.



assigned healthy mRNA. Next, the program arranges the
cancerous Cell objects so that they express cancer-cell local-
ities, meaning that all cancer cells should be located close to
each other since they are derived from the same origin.
Each Cell object has four neighbors. If the neighbor cell is
of the same type as the current cell, a GJIC object is creat-
ed to facilitate communication between the two Cell objects.
All cancerous Cell objects connect to each other through
homologous GJIC channels, forming a cancerous cell line;
therefore, every cancerous Cell object has at least one can-
cerous neighbor. Finally, the program mixes the healthy Cell
objects and the cancerous cell line by randomly placing the
healthy Cell objects around the cancerous cell line.

DKA Mechanisms:
The simulation of the DKA mechanisms takes place in
three stages: distribution of DKA, cancer detection, and
GCVTP propagation. For DKA distribution, the program
takes the third parameter d, the number of DKA, and gen-
erates d DKA objects. It then randomly distributes them
throughout all cells.

During chemical uptakes, cell volume increases. To avoid
cell lysis, cell volume regulations are required to keep the
cell volume stable (Lewis et al. 1990). These regulations usu-
ally involve ion channels that pump Na+ and K+ into/out of
the cell when the cell volume varies (at the scale of ~10%
of the isosmotic value). Unlike Na+ and K+, there are no
ion channels that can pump DKA out of the cell; thus, in
this simulation, a stricter restriction/assumption is imposed,
such that a maximum number of 100,000 DKA (0.1% of
the cell weight) can enter one cell without harming it. As a
result, the program first randomly picks a cell, which can be
healthy or cancerous. Then, it generates a random number,
from 0 to 100,000, of DKA objects to enter the chosen cell.
By repeating this process, the program distributes DKA to
different cell Objects until all DKA have been distributed.

Cancer detection takes place after DKA distribution. After
entering the Cell object, DKA objects use the detection
algorithm to detect whether the host cell is cancerous or
healthy. If the host cell tests positive for cancer, the
GCVTP objects are released from the DKA objects.
Otherwise, the DKA objects are terminated.

Finally, these GCVTP objects propagate from one cancer
cell to another through the GJIC channels. GJIC channels
allow chemicals and metabolites with molecular weight less
than 1,000 Da to diffuse from one cell to another; thus
GCVTP, which has a molecular weight of 496 Da, is able to
diffuse through GJIC channels. However, due to the degra-

dation of the DKA structure, not all GCVTP is released in
cancer cells as expected. In addition, due to the chemical
degradation (Cornors et al. 1986) of GCVTP (or other
cytotoxic materials), not all GCVTP released in one cancer
cell is able to propagate to nearby cancer cells.
Consequently, the diffusion of GCVTP is not uniform, and
there is an equilibrium condition at which all GCVTP
objects stabilize and are no longer able to propagate. To
take these two kinds of degradation into consideration, the
threshold for disrupting the equilibrium condition is
defined as a difference of 10,000 DKA (10% of the maxi-
mum DKA that is allowed to enter one cell) between two
neighboring cancer cells. Hence, GCVTP continues to
propagate until all cancer cells have reached the equilibrium
condition. After the equilibrium condition has been
reached, the program kills the cells that contain GCVTP
objects.

Exper iments and Results

Two different simulations demonstrate how DKA could
destroy cancer malignancies with minimal side effects, and
predict the efficacy of DKA. The first is the single-cell/sin-
gle-DKA simulation, which demonstrates in detail how a
DKA detects cancer and releases GCVTP if cancer is diag-
nosed in a cell. The second is the multiple-cell/multiple-
DKA simulation, which demonstrates the efficacy of DKA
with various cancer cell percentages and units of DKA
injected.

Single-Cell/Single-DKA Simulation
In this simulation, a DKA object is constructed to detect
the cancer indicators of the p53 gene, which is very fre-
quently mutated in small-cell lung cancer (SCLC). This gene
contains the cancer indicators CCUUUAU, AAGUAAA,
CCAAAAG, and CGACGAA (Takahashi et al. 1991). To
detect SCLC, this DKA must include a cancer detector con-
taining DNA segments GGAAATA, TTCATTT,
GGTTTTC, and GCTGCTT.

First, the DKA object is initialized in a cancer cell object
that expresses the SCLC p53 gene mutation. As Figure 7a
shows, the DKA cancer detector checks and cuts each can-
cer indicator until the whole mRNA object has been
checked. Then, after verifying that the cell object is cancer-
ous, DKA releases GCVTP to kill the cell. Next, the same
DKA object is initialized in a healthy cell, which contains
the mRNA object CCUUUAU-AAUUAAA-CCAAAAG-
CGACGAA. As Figure 7b shows, since the first segment
CCUUUAU is complementary to the first segment of the
cancer detector, DKA cuts the first segment and releases
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the second segment AAGUAAA. However, the second
mRNA segment is not complementary to the second seg-
ment of the cancer detector, which implies that this cell is
not cancerous. DKA terminates without releasing GCVTP.

Multiple-Cell/Multiple-DKA Simulation
In this simulation, three cell groups were created: 1,000 cells
in which 10% were cancerous, 1,000 cells in which 50%
were cancerous, and 1,000 cells in which 100% were can-
cerous. In each of these cases, 21 different experiments
were conducted by adjusting the amount of DKA used. For
each experiment, both the percentage of cancer cells initial-
ly entered by DKA and the percentage of cancer cells killed
by GCVTP after toxicity propagation were recorded. To
make sure that the results were reliable, each experiment
was repeated 100 times, and the average value of these sam-
ples was taken as the final result of each experiment.

Figure 8 compares the percentage of cancer cells killed with
the percentage of cancer cells initially entered by DKA. For
1,000 cells in which 10% are cancerous, the cancer cell
killing becomes reliable (>95%) if DKA have entered more
than 18.9% of cancer cells initially. For 1,000 cells with 50%
cancer cells, the cancer cell killing becomes reliable if DKA
have entered more than 8.3% of cancer cells initially. For
1,000 cells with 100% cancer cells, the cancer cell killing
becomes reliable if DKA have entered more than 2.05% of
cancer cells initially. This confirms that DKA does not have
to enter all cancer cells initially to destroy cancer malignan-
cies; as long as they can enter a certain threshold percentage
of all cancer cells, the toxicity they carry can propagate to all
cancer cells, resulting in complete tumor regression. In addi-
tion, this data demonstrates that a higher cancer cell per-
centage results in a lower threshold percentage. This finding
is reasonable because a higher cancer cell percentage implies
a higher density of homologous GJIC channels, and conse-
quently a better spread and propagation of GCVTP. In the
50% cancer cell case, the threshold percentage for complete
tumor regression is 10.5%, which agrees with the data
obtained from suicide gene therapy experiments with 50%-
50% cancerous to healthy cell culture (Culver etc. 1992).

Figure 9 compares the percentage of cancer cells killed with
the amount of DKA used. For 1,000 cells with 10% cancer
cells, the cancer cell killing becomes reliable (>95%) after
the number of DKA has reached 5,000,000. For 1,000 cells
with 50% cancer cells, the cancer cell killing becomes reli-
able after the number of DKA has reached 3,000,000. For
1,000 cells with 100% cancer cells, the cancer cell killing
becomes reliable after the number of DKA has reached
1,000,000. This shows that the percentage of cancer cells
killed is directly related to the number of DKA, and the
percentage of cells that are cancerous.
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A. 
Cell has been initialized! 
This cell contains mRNA CCUUUAUAAGUAAACCAAAACCGACGAA. 
 
DKA has been initialized!  This DKA has the following structure: 
1. The cancer detector has the follow structure: 
      lock: TTCATTTGGTTTTCGCTGCTT 
      probe: GGAAATA 
2. At the end of the detector there is a GCVTP attached 
3. Enzymes are also part of DKA 
 
DKA have been injected into the target cell. 
Binding successful!  Bond formed between DNA probe GGAAATA and mRNA 
sequence CCUUUAU. 
Strand cut! Cut from mRNA: CCUUUAU.  Cut from DKA: GGAAATA. 
 
Binding successful!  Bond formed between DNA probe TTCATTT and mRNA 
sequence AAGUAAA. 
Strand cut! Cut from mRNA: AAGUAAA.  Cut from DKA: TTCATTT. 
 
Binding successful!  Bond formed between DNA probe GGTTTTC and mRNA 
sequence CCAAAAG. 
Strand cut! Cut from mRNA: CCAAAAG.  Cut from DKA: GGTTTTC. 
 
Binding successful!  Bond formed between DNA probe GCTGCTT and mRNA 
sequence CGACGAA. 
Strand cut! Cut from mRNA: CGACGAA.  Cut from DKA: GCTGCTT. 
The whole mRNA strand has been checked and cut! 
 
GCVTP is released and Cell will be killed! 

B. 
Cell has been initialized! 
This cell contains mRNA CCUUUAUAAUUAAACCAAAAGCGACGAA. 
 
DKA has been initialized!  This DKA has the following structure: 
1. The cancer detector has the follow structure: 
      lock: TTCATTTGGTTTTCGCTGCTT 
      probe: GGAAATA 
2. At the end of the detector there is a GCVTP attached 
3. Enzymes are also part of DKA 
 
DKA have been injected into the target cell. 
Binding successful!  Bond formed between DNA probe GGAAATA and mRNA 
sequence CCUUUAU. 
Strand cut! Cut from mRNA: CCUUUAU.  Cut from DKA: GGAAATA. 
 
Binding failed!  This is not a cancerous cell! 

Figure 7
Single-Cell/Single-DKA Simulation result: (A) DKA checks the pres-
ence of all cancer indicators and confirms that the cell is cancer-
ous. (B) Since not all cancer indicators are detected, DKA termi-
nates and concludes that the cell is not cancerous.

0

10

20

30

40

50

60

70

80

90

100

0.25 0.8 1.3 2.05 8.3 14.25 18.9 59

Percentage of Cancer Cells Entered by DKAs

P
er

ce
nt

ag
e 

of
 C

an
ce

r 
C

el
ls

 K
ill

ed

10% cancer cells
50% cancer cells
100% cancer cells

Figure 8
Multiple-Cell/Multiple-DKA Simulation Result Part I: The relation-
ship between the percentage of cancer cells initially entered by
DKA and the percentage of cancer cells killed.



Figure 10 compares the percentage of cancer cells initially
entered by DKA with the number of DKA used. This
demonstrates that the percentage of cancer cells initially
entered by DKA depends on the number of DKA injected
to the cell group, but is independent of the percentage of
cells that are cancerous. This is reasonable because the per-
centage of cells that are cancerous determines the density of
homologous GJIC channels and, consequently, how well
GCVTP can propagate among cancer cells. Thus, it does
not affect the spread of DKA.

To identify the relationships between the efficacy of DKA,
the cancer cell percentage, and the amount of DKA inject-
ed into the cell group, simulation results have been reorga-
nized in Figure 11 with estimation trend lines. As shown in
Figure 11A, for a fixed cancer cell percentage, the efficacy
of DKA linearly depends on the number of DKA injected
into the cell group before saturation. After reaching satura-
tion, increasing the number of DKA has little effect on the
killing efficacy. For instance, the trend line matches the
dose-response relationship of the 100% cancer cell case
before the dose reaches 500,000 DKA, which results in 80%
tumor regression. However, after the dose reaches 500,000
DKA, the change of cancer cell killing efficacy slows down.
On the other hand, for a fixed number of DKA used, as
shown in Figure 11B, the efficacy of the DKA method also
linearly depends on the cancer cell percentage. Therefore,
the efficacy of DKA (E) linearly depends on the cancer cell
percentage (D) and the number of DKA injected into the
cell group (N), which is described by Equation 1.

There are several scatters that deviate from the trend lines
in the figures. These scatters may be the result of the ran-
domness of the software model. As indicated earlier, DKA

are distributed randomly through all cells to keep the model
simple. Consequently, the DKA efficacy varies according to
this distribution.

Conclusion and Future Work

This paper proposes the DNA-based Killer Automaton, an
innovative intelligent nanomedicine that has the potential to
completely destroy cancer malignancies in one treatment
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Figure 9
Multiple-Cell/Multiple-DKA Simulation Result Part II: The relation-
ship between the amount of DKA used (dose) and the percentage
of cancer cells killed (efficacy).
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Multiple-Cell/Multiple-DKA Simulation Result Part III: The relation-
ship between the amount of DKA used (dose) and the percentage
of cancer cells initially entered by DKA.
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Figure 11
The relationships between cancer cell percentage, the amount of
DKA used (dose), and the percentage of cancer cells killed (effi-
cacy).

E=Constant * D * N (1)



with minimal side effects. For this DKA model to work in
vivo, four major research challenges have been identified: (1)
A method to deliver DKA to mammalian cells is not yet
available. Possible solutions to this problem include
Retrovirus vectors, Adeno-Associated Virus (AAV) vectors,
and gene guns. (2) The restriction enzyme FOKI is not usu-
ally present in mammalian cells. If it is introduced into a
mammalian cell, it might cut random mRNA strands in a
healthy cell, therefore preventing DKA from working in vivo
at this stage. One possible solution is to deliver this enzyme
to cancer cells in DNA form with mammalian expression
promoter attached (Takebe et al. 1988). (3) There is no lit-
erature about how to attach GCVTP to a DNA strand,
although it could theoretically be done through chemical
synthesis or cross-linking. (4) A reliable method of releasing
GCVTP from DKA without losing its cytotoxicity is need-
ed. One possible solution is to identify an enzyme that can
separate DNA and GCVTP without changing the chemical
structure of GCVTP.

This research demonstrates that the DKA has the potential
to provide a promising approach to cure genetic mutation
diseases, such as cancer. If successfully applied in vivo, DKA
could also be used to cure other genetic mutation diseases.
The next stage of this research is to conduct an in vitro
experiment on this DKA model in a lab environment, so
that its efficacy in vitro can be evaluated and its in vivo feasi-
bilities can be predicted.
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