
Roshni Malani’s interest in soft-
ware engineering research
began in the classroom. From
this initial impetus, she pursued
her project with Professor
Richard Taylor and Eric
Dashofy, one of his graduate
students. Roshni’s experience
with undergraduate research
confirmed her desire to
become a university professor.
She is currently a student at
University of California, San
Diego working towards a doc-
torate degree in Computer
Science. For those students
who are considering an under-
graduate research project,
Roshni advises beginning their
projects early and making them
a priority. When she is not ana-
lyzing and interpreting data
from engineering research,
Roshni can be found playing
tennis, skiing, and shopping. An architectural style for significantly-sized software applications

must be carefully chosen to ensure the final system will exhibit all
the qualities the designers seek. Once chosen, appropriate imple-
mentation techniques must also be selected. It is commonly
assumed that generic, commercially-produced infrastructure will be
superior to open-source technologies. Roshni Malani’s project put
this assumption to the test—and discovered that, in the domain she

studied, the conventional wisdom was wrong. Commercial middleware can impose
heavyweight constraints, leading to sub-par performance as compared to more limit-
ed, judicious designs. Projects such as this confirm again that the best approach a
researcher can take is to question assumptions and follow the data!

K e y T e r m s

Architectural Frameworks

Java Message Service

Middleware

Software Architectural
Styles

The Benefits of a Java Message
Service Implementation of the
C2 Framework

Roshni Malani
Information and Computer Science

Software architectural styles are the key to designing and implementing large soft-
ware systems. Architectural styles impose rules and constraints on software archi-

tectures to elicit beneficial properties from those architectures. C2 is a component-
and message-based style that promotes the development of loosely-coupled applica-
tions that are distributable, dynamic and adaptable. However, the constraints of this
style are not well supported by modern object-oriented programming languages. The
Java Message Service (JMS) standard, implemented by many middleware vendors,
provides a number of capabilities needed by C2 applications. This study describes a
novel software architecture framework for building C2 applications based on a JMS
implementation. An empirical comparison of this framework with a hand-coded,
non-middleware-based framework was performed. The results of this comparison
demonstrated that although both frameworks exhibited a linear degradation in per-
formance as the number of components was increased, the non-middleware-based
framework performed better. However, the JMS-based framework has the potential
to provide many other beneficial features.

4 3T H E U C I U N D E R G R A D U A T E R E S E A R C H J O U R N A L

A u t h o r

A b s t r a c t

F a c u l t y M e n t o r

Richard Taylor
Donald Bren School of Information
and Computer Sciences

Introduction

The demand is increasing for large software systems that are
reliable, fast, distributable, and scalable. These system qual-
ities are achieved using well-designed software architectures
based on well-established architectural styles.

The C2 architectural style is a component- and message-
based architectural style, developed at the Institute for
Software Research at the University of California, Irvine,
that facilitates the construction of distributed, event-based,
loosely-coupled software architectures. C2 architectures
must be decomposed into autonomous components, con-
nected together by explicit connectors, and communicated
through asynchronous messages. Since object-oriented
programming languages do not directly support the con-
straints of the C2 style, a framework was needed to provide
development support for implementing C2 architectures. A
framework for the Java programming language, called
c2.fw, and a set of sample C2 applications were previously
developed.

Java Message Service (JMS) is the industry standard for dis-
tributed application development using Message-Oriented
Middleware (MOM). Several vendors implement the JMS
Application Programming Interface (API) to allow Java
components to communicate via the reliable exchange of
asynchronous messages.

The constraints of the C2 architectural style and the con-
cepts embodied by the JMS API have many similarities,
especially the message-based, asynchronous communication
of distributed, loosely-coupled software components. Thus,
the research goal was to construct a JMS-based framework
that supported the C2 style and compared empirically with
the pure Java-based framework. The JMS-based framework,
called c2.fw.jms, would employ JMS topics in the
publish/subscribe messaging paradigm to deliver messages
between components and connectors. The performance of
the frameworks was tested by developing a suite of C2
architectures and measuring the average message processing
time on each framework.

After successfully building the JMS-based C2 framework
and running a series of experiments, the message process-
ing time of both the Java-based and JMS-based frameworks
was empirically shown to increase linearly with the increase
in number of components. Even though c2.fw.jms had a
greater initial overhead and took longer to process each
message, both frameworks exhibited a linear degradation in
performance as the number of components was increased.

We believe the JMS implementation performed poorly in
comparison to the pure Java implementation because it was
not optimized for local message delivery and because it pro-
vided additional features, such as the reliable, guaranteed
delivery of messages.

Background

Software Architectural Styles
Software architecture is the high-level structure of a soft-
ware system. The structural elements of architectures are
components (the loci of computation), connectors (the loci
of communication), interfaces (that define how compo-
nents and connectors interact), and links (that define the
topology). Software architecture provides an abstraction for
the design of large-scale software systems that is meaning-
ful, valuable and visual. The importance of software archi-
tecture in software engineering is analogous to architectural
blueprints in civil engineering. The blueprints provide
everyone involved in the project a common understanding
of the system and define a plan for converting the concept
into a functional building.

Software architecture is an expression of a particular soft-
ware architectural style—a set of rules that define or con-
strain the architectures that conform to the style. These
rules and constraints are intended to make it easier to elic-
it desirable properties of the system (Di Nitto, 1999).
Returning to the civil engineering analogy, architectural
styles, such as Gothic or Baroque styles, define a set of
rules for construction of specific types of buildings that
have certain desirable properties. For example, Gothic
building features, styles such as buttresses and stone con-
struction, result in structures that can support large open
spaces and survive for many centuries. Likewise, many soft-
ware architectural styles have been developed over the
years, including: the pipe-and-filter style used in the UNIX
operating system, the blackboard style used in the artificial
intelligence (AI) domain, the implicit invocation style used
in event-based applications, the peer-to-peer style used in
file-sharing networks, and the client-server architecture
used throughout the Internet. These styles have few con-
straints and, as such, elicit few desirable software qualities.
For example, in the pipe-and-filter style, communication is
restricted to byte streams, but the style does not constrain
the contents of these streams. Because of this, pipe-and-
filter can guarantee communication but not meaningful
interoperability. Highly complex architectural styles specify
more rules, require more constraints, and elicit qualities
that are more valuable.

44 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

TT H E BB E N E F I T S O F A JJ A V A MM E S S A G E SS E R V I C E II M P L E M E N T A T I O N O F T H E CC 22 FF R A M E W O R K

The C2 Architectural Style
The C2 architectural style is a component- and message-
based architectural style. A component-based style is one in
which systems are modeled through the explicit use of
components and connectors. A message-based style
employs asynchronous messages to facilitate communica-
tion throughout the system. Constraints placed by the C2

style include: 1) each compo-
nent and connector have only
two interfaces, explicitly
referred to as the top and
bottom interfaces; 2) the top
of a component may only be
connected to the bottom of a
single connector; 3) the bot-
tom of a component may
only be connected to the top
of a single connector;

4) many components and connectors may be con-
nected to the top or bottom of a single connector; 5)
communication between components and connec-
tors occurs only through asynchronous messages and
through no other means; and 6) components may
assume an independent thread of control
(Medvidovic, 1997). A simple example of an applica-
tion built using the C2 style is the client-server chat
system shown in Figure 1. This application functions
as a simple Instant Messaging system with three fixed
clients who can send short text messages that will be
broadcast by the chat server.

The constraints of the C2 architectural style induce
many beneficial properties from the system. Since
each component and connector is assumed to run in
its own thread and in its own address space, the sys-
tem is easy to distribute across multiple processes and
machines. The components are loosely-coupled and
independent, with a limited view of the rest of the
system. Since connectors facilitate the dynamic trans-
mission of messages, the system can be reconfigured
at runtime by adding and removing components and
connectors (Taylor, 1996).

A more involved example of a C2 application is the
KLAX video game, shown in Figure 2. Colored tiles
fall down chutes, are caught by the palette, and are
dropped down wells. The objective is to eliminate tiles
by collecting three of the same color in a given well.
This architecture can be modified during runtime to
implement a different game called SpellingKLAX, in
which letters fall down chutes and are eliminated only

if they spell a valid word. Because of C2’s requirements of
loosely-coupled components and explicit connectors, the
three components involved in determining the next tile, in
matching the tiles, and in displaying the tiles in this architec-
ture can be replaced easily during runtime with three com-
ponents that determine the next letter, match the spelling,
and display the letters (Medvidovic, 1996).

Object-oriented languages like Java do not directly support
the C2 style constraints. Computation in C2 architectures is
achieved by components with two interfaces, whereas Java
provides generic objects. Communication in C2 architec-
tures is achieved by asynchronous messaging, whereas Java
only supports synchronous, parameterized method calls.
Thus, a software framework, called c2.fw, was developed to
ease the implementation of C2 architectures in the Java pro-
gramming language. The framework provides abstract base

4 5T H E U C I U N D E R G R A D U A T E R E S E A R C H J O U R N A L

RR o s h n i MM a l a n i

Chat Server

Bus Connector

Client Client Client

Figure 1
The Client-Server Chat System

Bus Connector

Status ADT Clock
Logic

Chute ADT Well ADT Palette
ADT

Bus Connector

Tile Matching
Logic

 Next Tile
Placing Logic

 Relative Pos
Logic

Bus Connector

Status
Logic

Status
Artist

Chute Artist Well Artist Palette
Artist

Tile Artist

 Layout
Manager

 Graphics
Binding

Bus Connector

Bus Connector

Bus Connector

Figure 2
KLAX Architecture and Screen Shot

classes for C2 entities such as components, connectors,
interfaces, and messages, and allows the user to control the
behavior or architectures via pluggable threading policies,
message queuing policies, and architecture managers that
govern topology.

Middleware
Large, distributed systems are often plagued with problems
of heterogeneity and interoperability. Heterogeneity issues
may arise from the use of different programming languages,
hardware platforms, operating systems, and data representa-
tions. Interoperability denotes the ability of heterogeneous
systems to communicate meaningfully and to exchange data
or services. With the introduction of middleware, hetero-
geneity can be alleviated and interoperability can be
achieved.

Middleware is a layer of software between the distributed
application and the operating system that consists of a set of
standard interfaces that help the application use networked
resources and services. There are several different categories
of middleware: transaction-oriented middleware, such as
IBM CICS of Tuxedo, which supports the integration of
transactions across distributed databases; Remote Procedure
Call (RPC), which supports the invocation of procedures
across machine boundaries; and object-oriented middle-
ware, such as CORBA, Remote
Method Invocation (RMI), and
Microsoft’s COM, which facilitate the
synchronous communication
between objects. Another middleware
category is MOM, which ensures that
asynchronous messages are transmit-
ted reliably among software compo-
nents. Messages are self-contained
packages of autonomous data sent to
inform an application of some event.
MOMs provide fault tolerance, load
balancing, scalability, and transaction-
al support (Emmerich, 2000).

Java Message Service
JMS is a Java API implemented by
several MOM vendors to allow dis-
tributed Java components developed
in the Java 2 Platform, Enterprise
Edition (J2EE) to communicate via
asynchronous messages. JMS applica-
tions consist of a provider, clients,
messages, and administrated objects,
and are developed in either the pub-

lish/subscribe paradigm or the point-to-point paradigm. A
JMS provider is a messaging server that supports the cre-
ation of connections (multi-threaded virtual links to the
provider) and of sessions (single-threaded contexts for pro-
ducing and consuming messages). JMS clients are Java pro-
grams that produce or consume messages. JMS messages
are objects that communicate information between JMS
clients, and are composed of a header, some optional prop-
erties, and an optional body. Administered objects are pre-
configured JMS objects, such as a connection factory
(object a client uses to create a connection to a provider)
and a destination (object a client uses to specify the target
of its messages) (Armstrong, 2003).

The publish/subscribe messaging paradigm, as illustrated
in Figure 3, is built on the concept of a topic, which func-
tions somewhat like a bulletin board. Consumers subscribe
to receive messages from a given topic and publishers
address messages to a topic. The JMS provider distributes
the messages arriving from a topic’s multiple publishers to
its multiple subscribers. Thus, publishers and subscribers
remain relatively anonymous. However, there exists a tim-
ing dependency, in that a client who subscribes to a topic
can only consume messages published the subscription has
been created. On the other hand, the point-to-point mes-
saging paradigm, as illustrated in Figure 4, is built on the

46 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

TT H E BB E N E F I T S O F A JJ A V A MM E S S A G E SS E R V I C E II M P L E M E N T A T I O N O F T H E CC 22 FF R A M E W O R K

Figure 3
Publish/Subscribe Messaging Paradigm

Figure 4
Point-to-Point Messaging Paradigm

concept of a queue. Senders address each message to a spe-
cific queue and receivers extract messages from the queues
established to hold their messages. Unlike the publish/sub-
scribe model, messages in the point-to-point domain may
only be consumed by one receiver. There exists no timing
dependency in the point-to-point paradigm because a
receiver can extract its messages whether or not it is run-
ning when the client sends the message (Armstrong, 2003).

Thus, the key features of JMS applications are loose cou-
pling, message-based communication, asynchrony, dis-
tributability, reliability, and resilience. JMS applications are
loosely coupled, in that producers and consumers are not
explicitly aware of each other, but rather only the JMS
provider. Since communication is achieved solely through
the exchange of messages and since the JMS provider deliv-
ers the messages, the applications are event based and asyn-
chronous. Since all clients are autonomous and since the
provider handles the delivery of messages, the use of JMS
eases communication over process and machine boundaries,
resulting in a distributed application. The JMS API supports
the use of guaranteed message delivery as well as the
optional use of fault tolerance and load sharing, thus allow-
ing JMS applications to be reliable and resilient.

Motivation

The concepts at the heart of the JMS are similar to those
embodied by the constraints of the C2 architectural style.
Both the JMS API and the C2 style require asynchronous
communication via messages. Both promote the develop-
ment of distributed, loosely-coupled software components
interacting through explicit connectors. In the C2 style,
connectors are first-class objects like components; in the
JMS API, topics and queues are explicitly modeled in the
architecture. This indicates that it should be possible to use
JMS to create a lightweight C2 framework that leverages
JMS’ strengths.

Why create a JMS-based framework that supports the con-
straints of the C2 style? One reason is to determine how
off-the-shelf message-oriented middleware can simplify the
development of a framework. Another goal is to discover
how and if the performance of C2 applications improves
by using a middleware solution. An additional purpose is to
study the feasibility of leveraging other capabilities of a
middleware solution, such as fault tolerance and support for
distributed applications, to make the current C2 framework
more powerful. These three motivations guided our devel-
opment of a new framework for the C2 style using JMS.

Approach

JMS-Based Framework for C2
One of the most important design goals of the JMS-based
framework (c2.fw.jms) was that it be compatible with the
current Java-based framework (c2.fw). The primary reason
for compatibility was so an empirical comparison of the
two frameworks could be directly evaluated, without having
to reimplement the components or connectors. Another
reason was to provide developers with a simple way to
migrate their applications to the new framework.

The c2.fw framework provided base classes for the many
different C2 concepts, such as components, connectors,
links, and messages. Some boilerplate connectors and
generic message types were also provided. Three different
objects control C2 architecture: the architecture manager,
message handler, and architecture engine. The architecture
manager is responsible for the topology of the architecture,
and manages what components and connectors are in the
architecture and which interfaces are linked to which other
interfaces. The message handler provides a queuing policy
for messages by either a single message queue for the entire
architecture or one queue for each interface. The architec-
ture engine manages the threading policy—either a static
pool of threads for the entire architecture or one thread for
each brick. These three objects together control any C2
architecture. In order to create an interface-compatible
JMS-based framework, JMS was employed to implement
the functionality of these three objects.

Creating a JMS-based framework to support the constraints
of the C2 architectural style involved several important
design decisions. The first important decision was the
choice of the JMS programming paradigm: publish/sub-
scribe or point-to-point. In the publish/subscribe paradigm,
components and connectors can simply maintain a topic for
the top interface and another topic for the bottom interface.
When sending a message, the component or connector can
publish to one topic, without explicit awareness of the
recipients of the message. However, in the point-to-point
paradigm, each link between a component and a connector
must have a queue at both ends. Therefore, if a connector
is linked to six different objects on its bottom interface,
then it will need to maintain six different queues for its bot-
tom interface, thus making it explicitly aware of the recipi-
ents of its messages. In addition, a queue retains its mes-
sages while the receiver is not running and delivers them
when the receiver becomes active. This lack of timing
dependency between the production and consumption of
messages is not characteristic of the C2 style. Thus, for

4 7T H E U C I U N D E R G R A D U A T E R E S E A R C H J O U R N A L

RR o s h n i MM a l a n i

greater simplicity, for more
decoupling of components
and connectors, and for a tim-
ing dependency, c2.fw.jms was
built on the publish/subscribe
model.

The next design decision in the
process of developing a JMS-
based framework was how
many topics to use throughout
the architecture. The first idea
was to replace each connector
with a JMS topic, since both
perform the same function.
However, since connectors
may perform functions other
than those supported directly
by JMS, the framework should
retain the notion of connectors
and not replace them in their
entirety. The second idea was
to create one topic for each
component and connector,
thus treating both as first-class
modeling objects. However,
the difficulty with this idea was the lack of explicit support
for the C2 architectural style constraint of two independent
interfaces. Thus, the third idea was to create one topic per
interface on each component and connector. Even though
the first two ideas required a smaller number of topics, the
third best reflected the constraints of the C2 style.

Another design decision regarding JMS was whether to use
administratively-created topics or programmatically-created
temporary topics. The advantage of defining topics admin-
istratively is that they are created when the JMS provider is
started, rather than when the application is started, thus
resulting in a faster startup time. However, the administra-
tive topics are fixed and cannot be changed dynamically by
the program during runtime. Therefore, despite their
greater overhead, temporary topics were better suited to the
constraints of the C2 style.

Because of these design decisions, construction of the JMS-
based framework for C2 applications was fairly straightfor-
ward. When creating components or connectors, the frame-
work created two temporary topics, one for each interface.
When creating a link between two interfaces, the framework
created two subscriptions: one subscription from the first
brick (component or connector) to the second brick’s inter-

face, and another subscription from the second brick to the
first brick’s interface. When a component or connector
received a request, it published to the topic on its top inter-
face. When a component or connector was sent a notifica-
tion, it published to the topic on its bottom interface. If the
message was sent to multiple components or connectors,
the message needed to be published only once to the appro-
priate topic. After publishing to a topic, JMS took care of
routing the message to the appropriate subscribers auto-
matically. The sequence of steps required to send and
receive messages is demonstrated in Figure 5.

In contrast to c2.fw, c2.fw.jms was a much simpler imple-
mentation. Of the three objects that control the C2 archi-
tecture in c2.fw, the functionality of the message handler
and architecture engine became almost obsolete, whereas
the functionality of the architecture manager remained
nearly the same. Since JMS implementations were responsi-
ble for allocating threads among the topics, c2.fw.jms did
not need to do this explicitly in the architecture engine. In
addition, a message handler was not needed because the
JMS delivered messages to the appropriate component or
connector. Even though these objects were not needed any-
more, they were retained as empty skeletons in order to
maintain compatibility with c2.fw. Only the architecture

48 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

TT H E BB E N E F I T S O F A JJ A V A MM E S S A G E SS E R V I C E II M P L E M E N T A T I O N O F T H E CC 22 FF R A M E W O R K

Figure 5
JMS-Based C2 Framework Design

manager was modified to handle the creation of topics in
addition to the creation of components, connectors and
links. Thus, c2.fw.jms resulted in a simpler implementation.

The final design decision questioned which JMS implemen-
tation to use in building c2.fw.jms. There are at least eight
valid implementations of JMS available: some are expensive,
others are free; some only support the functionality of the
API, others provide more features; and some are bundled
with other software products, others are standalone prod-
ucts. Of the eight, the two most commonly used imple-
mentations in industry are BEA WebLogic and IBM
WebSphere, both of which are large, heavyweight products.
The decision was rather arbitrary, since c2.fw.jms simply
requires a valid implementation. Since the BEA WebLogic
Platform has a free one-year development license, it was
used in constructing c2.fw.jms.

Framework Performance Measurement
One of the purposes of developing another framework for
the C2 architectural style was to determine the relative per-
formance of both frameworks. In order to compare empir-
ically the performance of both the Java-based and
c2.fw.jms, a set of different C2 architectures was developed
that stressed the framework in different ways. The architec-
tures were created in each framework and messages were
sent through the architecture. The performance of each
framework was measured and compared.

The set of C2 architectures that tested the frameworks was
developed based on the observation that most C2 architec-
tures grow in two directions. As demonstrated by the
KLAX architecture in Figure 2, and as derived from experi-
ence with many additional C2 applications, most C2 archi-
tectures tend to grow vertically as more layers of compo-
nents and connectors are added and horizontally as more
components are added in a given layer. A vertical increase in
components and connectors tests the overhead of manag-
ing more components, connectors, topics, and links. A hor-
izontal increase in components tests the multicasting ability
of the connector. Even though most architectures grow in
both directions, the performance of each direction was
investigated separately. The reason for analyzing each direc-
tion independently was to observe whether JMS might per-
form better in the horizontal direction due to its inherent
support for multicast publish and subscribe. A set of test
cases was developed, and a file format for describing the
architecture was designed. An automated bootstrapper read
a file describing an arbitrary C2 architecture and instantiat-
ed the given architecture. Two different types of perfor-
mance were measured: the time required to instantiate the

given architecture and the time needed to process all the
messages sent through the architecture. The tests were run
and the data was collected, organized and analyzed.

Evaluation

Since C2 architectures are two-dimensional, they grow in
horizontal and vertical directions. Architectures grow hori-
zontally as more components are linked to the same con-
nector. They grow vertically as more layers of components
and connectors are linked on top of each other. Each direc-
tion was evaluated independently in a series of tests that
stressed the foundations of both the Java-based and JMS-
based frameworks.

Figure 6 demonstrates the results of increasing the compo-
nents in a vertical direction. The x-axis displays the number
of components layered vertically between connectors, and
the y-axis measures the number of milliseconds it took on
average to send 100 messages from the top of the architec-
ture to the bottom. The message processing time began
after the first message was received and ended after the last
expected message was received. Since the two sets of data
points seem to form a straight line, a linear regression line
and equation is shown with each. The performance degrad-
ed linearly as the number of components to be traversed
increased linearly, as expected. The slope of the lines indi-
cates the increase in the amount of time each framework
takes as a layer of components is added to the architecture.
As the graph demonstrates, c2.fw requires approximately 10
milliseconds per additional component vertical layer, where-
as c2.fw.jms requires approximately 60 milliseconds.
However, since both frameworks demonstrate a linear
degradation in performance, they have the same asymptot-
ic order in the number of components.

4 9T H E U C I U N D E R G R A D U A T E R E S E A R C H J O U R N A L

RR o s h n i MM a l a n i

Linear (JMS-Based)Linear (Java-Based)JMS-BasedJava-Based

Number of Components

Av
er

ag
e

M
es

sa
ge

 P
ro

ce
ss

in
g

Ti
m

e

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100

y=61.786x+2247.3

y=10.648x-37.003

Figure 6
Vertical Increase of Components

Figure 7 is similar to Figure 6, except that it shows the hor-
izontal increase in components. Again, the two sets of data
points seem to form a linear line. As the linear regression
equation indicates, c2.fw requires approximately 6 millisec-
onds per additional component in the horizontal layer,
whereas c2.fw.jms requires approximately 42 milliseconds.

Thus, the data provided in the two graphs indicate that both
c2.fw and c2.fw.jms exhibit approximate linear message pro-
cessing time in the number of components. On average,
c2.fw.jms required approximately six to seven times more
processing time per message than the c2.fw. Further, the
vertical increase in components required a longer message
processing time per additional component than the hori-
zontal increase in both frameworks.

In addition to measuring the average message processing time
for each of these test cases, the average initialization time for
the architecture was measured separately. The architecture
initialization time started at the beginning of the architecture
constructor and ended after each of the components and
connectors were started but before they began sending mes-
sages. The average initialization time depended on the num-
ber of components being instantiated. For the tests run in
this experiment, the approximate initialization time for c2.fw
was hundreds of milliseconds, whereas for c2.fw.jms, it was
thousands of milliseconds. Thus, c2.fw.jms required approxi-
mately ten times as much initial overhead time.

Hence, as the number of components increased, c2.fw.jms
performed slightly worse than c2.fw, both in terms of the
initial preprocessing as well as the processing of each mes-
sage. The initialization involved creating the architecture
manager, the message handler, and the architecture engine,
adding components and connectors, and beginning all the

architectural components. The c2.fw framework employed
native Java constructs, such as vectors and hash tables, to
store all the data. On the other hand, the c2.fw.jms frame-
work also contacted the JMS server, created a connection,
established a session, instantiated several temporary topics,
and specified the publishers and subscribers of the topics.
The processing of messages involved the transfer of mes-
sages from one component or connector interface to anoth-
er connector interface, or vice versa. In both frameworks,
the message handler ensured that the message was sent. The
c2.fw framework employed a queue of messages associated
with each interface, and sent a message by adding the mes-
sage to an appropriate queue. When a message was added to
a queue, the component or connector was notified and han-
dled it accordingly. On the other hand, the c2.fw.jms frame-
work published the message to the temporary topic associ-
ated with the appropriate interface. When a message was
published to a topic, the JMS provider ensured that all JMS
clients that were subscribed to the topic received that mes-
sage. The subscribers in our framework were actively listen-
ing for messages and handled them accordingly.

All of the tasks of the JMS-based framework, such as cre-
ating connections, sessions, topics, publishers, and sub-
scribers, as well as publishing messages, required interaction
with the JMS provider. The JMS implementation supplied
this provider. Even though we could not see how the
provider was implemented, we knew that our heavyweight
implementation executed more code, utilized more
resources, and performed slower than the highly optimized
c2.fw framework. However, this constant factor of perfor-
mance degradation provided many benefits, such as guaran-
teed once-and-only-once delivery of messages and the per-
sistent storage of messages for crash recovery.

Related Work

Other researchers are exploring the concept of using mid-
dleware solutions to provide distributed communication in
software architectures.

Eric Dashofy (1999) has compared the benefits of four dif-
ferent middleware technologies, including RPC and RMI,
used to implement software connectors in the C2 style. His
work is similar to our research for two reasons. First, JMS is
simply another messaging middleware technology used to
implement connectors, and provides some alternative bene-
fits to those technologies studied by Dashofy. Second, his
work highlights the importance of encapsulating the func-
tionality of the middleware within software connectors so
that the implementation-dependent factors are separated

50 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

TT H E BB E N E F I T S O F A JJ A V A MM E S S A G E SS E R V I C E II M P L E M E N T A T I O N O F T H E CC 22 FF R A M E W O R K

Java-Based JMS-Based Linear (Java-Based) Linear (JMS-Based)

Number of Components

Av
er

ag
e

M
es

sa
ge

 P
ro

ce
ss

in
g

Ti
m

e

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

y=42.735x+840.05

y=5.9798x+20.951

Figure 7
Horizontal Increase of Components

from the architectural style. This separation relieves the
architect of the burden of examining the properties of dif-
ferent middleware technologies, yet allows the implementor
to leverage the different benefits of the different middle-
ware technologies and to choose the technology most
appropriate for the given implementation.

Nenad Medvidovic (2002) approached bridging heteroge-
neous middleware by using architectural constructs. His
work addressed the interoperability of software across dif-
ferent middleware technologies and presented software con-
nectors as a possible solution to unify two different tech-
nologies. However, Medvidovic’s work is limited to pairwise
solutions, and multiple technologies cannot be accommodat-
ed yet. JMS is an emerging middleware technology that is not
explored by his paper, yet general inter-middleware connec-
tors should be able to interoperate with JMS systems as well.

Middleware connectors not only provide interoperability,
they also provide quality of service aspects, such as security,
scalability, distribution, and concurrency. Model-Integrated
Computing can be systematically synthesized and integrated
into middleware components at six different points to guar-
antee quality aspects of an application (Gokhale, 2002).
Further, software architecture is being introduced into mid-
dleware platforms to offer integrity and configurability. Blair
et al. (2000) argue that systematic synthesis of middleware
configurations can be modeled with architecture descrip-
tions and that such models can then adapt to unanticipated,
dynamic changes. The ability of a JMS-based framework to
provide quality of service and dynamic reconfigurability are
interesting areas of open research.

Conclusion

The constraints of the C2 architectural style and the con-
cepts embodied by the JMS are congruous. The purpose of
JMS is to provide commercial applications with a standard
for asynchronous message production, distribution, and
delivery to allow for a loosely-coupled interaction between
new Java components and existing legacy systems capable
of messaging. However, the JMS API is flexible enough to
allow the exchange of any data messages, including C2 style
requests and notifications. Thus, the JMS-based framework
that facilitated message exchange between C2 components
and connectors using a commercial JMS implementation
was successful.

Even though both the Java and JMS-based frameworks
exhibited a linear degradation in performance as the num-
ber of components was increased, c2.fw.jms was slower.

The data shows that both frameworks demonstrated linear
performance degradation, which indicates that the mes-
saging policy is implemented in a similar manner. c2.fw
was highly optimized for local messages, that is, those
messages that are not sent across process or machine
boundaries. On the contrary, c2.fw.jms was not optimized
for local messages, but rather provided support for the
reliable exchange of distributed messages. In addition, this
framework also provided guaranteed once-and-only-once
delivery of messages as well as the persistent storage of
messages for crash recovery. Further, many more objects
must be instantiated and many more methods must be
invoked in c2.fw.jms as compared to c2.fw, thus resulting
in a greater initial overhead time. Thus, c2.fw performed
better for local C2 architectures, but did not have the
many benefits of JMS.

Future Work

The successful creation of a JMS-based framework for the
C2 architectural style paves the road for further research in
improving the performance of C2 applications. The bene-
fits of alternative design decisions, such as replacing C2
connectors entirely with JMS topics or using queues instead
of topics, need to be determined. The possibility of further
performance improvements may be achieved through
administrative tuning features available with WebLogic JMS.
Such tuning features include deferring JMS acknowledge-
ments and commits, changing the server-side and client-side
thread pool size, and disabling synchronous writes and
enabling direct file writes. Another area of further research
is leveraging additional features of JMS to implement more
powerful C2 connectors. Such additional features include
distributability across process and machine boundaries,
guaranteed delivery of messages, and persistent message
storage for auditing. In addition, the performance benefits
of employing JMS implementations from different vendors,
such as WebSphere, SonicMQ, TIBCO and OpenJMS, need
to be explored. The performance benefits of creating a C2
framework with alternative middleware solutions for dis-
tributed systems, such as CORBA, COM, ILU and TCP
Sockets warrant future exploration.

Acknowledgements

I would like to thank Professor Richard Taylor for under-
taking this research project and for consistently providing
support and encouragement. I am very grateful to Eric
Dashofy for hosting regularly scheduled meetings, for help-
ing every step of the way, and for providing invaluable feed-
back.

5 1T H E U C I U N D E R G R A D U A T E R E S E A R C H J O U R N A L

RR o s h n i MM a l a n i

Works Cited

Armstrong, E., J. Ball, S. Bodoff, D.B. Carson, I. Evans, D. Green,
K. Haase, and E. Jendrock. “The J2EE™ 1.4 Tutorial. Chapter
33: The Java Message Service API.” November, 2003.
[http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html].

Blair, G.S., L. Blair, V. Issarny, P. Tuma, and A. Zarras. “The Role
of Software Architecture in Constraining Adaptation in
Component-based Middleware Platforms.” ACM
International Conference on Distributed Systems Platforms.
p. 164-184, New York, NY, April 2000.

Dashofy, E.M., N. Medvidovic, and R.N. Taylor. “Using Off-the-
Shelf Middleware to Implement Connectors in Distributed
Software Architectures.” Proceedings of the 21st
International Conference on Software Engineering
(ICSE’99). p. 3-12, Los Angeles, CA, May 16-22, 1999.

Di Nitto, E. and D.S. Rosenblum. “Exploiting ADLs to Specify
Architectural Styles Induced by Middleware Infrastructures.”
Proceedings of the 21st International Conference on
Software Engineering. p. 13-22, IEEE Computer Society. Los
Angeles, CA, May, 1999.

Emmerich, W. “Engineering Distributed Objects.” Chichester,
England: John Wiley & Sons, Ltd., 2000.

Gokhale, A., D.C. Schmidt, B. Natarajan, and N. Wang.
“Developing and Integrating Enterprise Components and
Services: Applying Model-Integrated Computing to
Component Middleware and Enterprise Applications.”
Communications of the ACM. p. 65-70, ACM Press. New
York, NY, October 2002.

Medvidovic, N. “Component-Based Software Engineering: On
the Role of Middleware in Architecture-based Software
Development.” Proceedings of the 14th International
Conference on Software Engineering and Knowledge. p.
299-306, ACM Press. New York, NY, July 2002.

Medvidovic, N. and R.N. Taylor. “Exploiting Architectural Style
to Develop a Family of Applications.” IEEE Proceedings -
Software Engineering. 144 (5/6, October/December), p.
237-248, 1997.

Medvidovic, N., P. Oreizy, J.E. Robbins, and R.N. Taylor. “Using
Object-Oriented Typing to Support Architectural Design in
the C2 Style.” Proceedings of the ACM SIGSOFT ’96
Fourth Symposium on the Foundations of Software
Engineering. p. 24-32, ACM SIGSOFT. San Francisco, CA,
October, 1996.

Taylor, R.N., N. Medvidovic, K.M. Anderson, E.J. Whitehead Jr.,
J.E. Robbins, K.A. Nies, P. Oreizy and D.L. Dubrow. “A
Component- and Message-Based Architectural Style for GUI
Software.” IEEE Transactions on Software Engineering. 22
(6), p. 390-406, June, 1996.

52 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

TT H E BB E N E F I T S O F A JJ A V A MM E S S A G E SS E R V I C E II M P L E M E N T A T I O N O F T H E CC 22 FF R A M E W O R K

