
Loren Chang’s first undergrad-
uate research experience led to
a dead end when he learned
that plasma physics was not his
passion. However, when he
began work in the wavefront
sensing lab under Professor
Chanan, he knew he had found
a match to his interests.
Loren’s research in the testing
of telescope phasing algo-
rithms developed during his
sophomore year and eventually
resulted in his current pursuit
of graduate studies in atmo-
spheric remote sensing sys-
tems at the University of
Colorado, Boulder. In his free
time, Loren enjoys a wide
range of leisure activities
including astronomy, comput-
ers, swimming, cycling, hiking,
and traveling to new places.

Loren Chang’s research was concerned with aligning the next generation
of giant optical telescopes, which will consist of segmented primary mir-
rors with hundreds or even thousands of mirror segments. We know
how to solve this problem for the current generation of large telescopes,
such as the two Keck telescopes on Mauna Kea. However, these have
only 36 segments each, and it is not clear that the same techniques will
work with much larger numbers of segments. A group at the European

Southern Observatory (ESO) has developed an alternative technique. Loren confirmed that
the ESO simulations were substantially correct (already an admirable achievement for an
undergraduate thesis). However, he went beyond this and showed how an instability in the
ESO method could be addressed by using “white light,” in which multiple wavelengths are
sampled in parallel, rather than in series. Loren’s work (among other ideas) will be featured
in a collaboration meeting between UC and ESO astronomers planned for this summer.
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With the introduction of large telescope mirrors comprised of many individual
segments, the problem of insuring a smooth continuous mirror surface (i.e.

phasing) becomes critical. The vertical displacements (piston errors) between the
individual segments must be reduced to a small fraction of the wavelength of incom-
ing light. In one proposed technique, light from the telescope mirror is split between
the two arms of a Mach-Zehnder interferometer, and the two outputs are subtract-
ed from one another. The piston error of each mirror segment can then be deter-
mined from the resulting fringes that occur at the segment edges of this “differential
interferogram.” By implementing this algorithm via computer simulation, it can be
demonstrated that the dependence of fringe intensity on the piston error is a sine
function when the light is monochromatic. In addition, the original algorithm may be
modified to work using wavelengths of light in a Gaussian bandpass. Unlike the
monochromatic case, the intensities in the broadband case behave as a sine function
modulated so they decay to zero as the piston error increases. This allows for a more
robust algorithm that is much more effective at detecting piston errors greater than
one wavelength.
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Introduction

Until two decades ago, nearly all telescopes contained
monolithic telescope mirrors, which are mirrors comprised
of a single slab of glass. The angular resolution of a tele-
scope mirror at light wavelength λ is given by the familiar
relation λ/D (Rayleigh’s Criterion). Thus, a telescope of
larger diameter will have a higher resolving power, allowing
it to accurately image smaller details. The needs of the
astronomical community have led to the development of
telescopes with mirrors of ever-greater diameter.

Unfortunately, a monolithic telescope mirror in a ground-
based telescope is limited by the amount of glass required
to prevent it from sagging or breaking under its weight. As
the diameter of a monolithic mirror is increased, the thick-
ness of the mirror must also be increased. Eventually, the
sheer size and weight of the glass required makes this
impractical for use in ground-based telescopes above a cer-
tain diameter (Nelson et al., 1985). Similarly, this property of
monolithic mirrors also renders them impractical for use in
larger space-based platforms due to spacecraft weight con-
siderations.

This limitation has been overcome with the development of
segmented telescope mirrors, a concept originally proposed
by Nelson et al. for use in the Keck Telescopes (Nelson et
al., 1985; Nelson, 1989). In a segmented telescope mirror,
several smaller hexagonal mirror segments are placed side-
by-side forming a single, continuous main mirror. Because
of their smaller individual size, the individual segments do
not need to be as thick as a single monolithic mirror with
the same total diameter. With the weight limitation
removed, the construction of extremely large telescopes
becomes possible. Besides ground-based telescopes, seg-
mented telescope mirrors are also attractive for space-based
platforms due to their low mass (when compared to a
monolithic mirror), and their ability to be folded before
deployment. Both of these are important considerations
when launching payloads into orbit.

Segmented mirror technology has already been introduced
and is in use at the 10-meter Keck Telescopes in Hawaii. It
is planned for the main mirror of the James Webb Space
Telescope (6.5 meters in diameter), which is scheduled for
launch in 2011. Other projects currently in development
such as CELT (California Extremely Large Telescope) and
the European Southern Observatory’s 100-meter OWL
(Overwhelmingly Large Telescope) are also being designed
to use segmented mirrors.

Although promising when compared to monolithic mirrors,
segmented mirrors are not without their own problems. The
most notable of these is ensuring a smooth continuous mir-
ror surface, a process known as phasing. A properly phased
telescope will have a resolution that corresponds to the total
diameter of the entire segmented mirror. Conversely, an
unphased telescope will have very poor resolution, limited
by the diameter of an individual segment.

One important process in phasing a segmented mirror tele-
scope involves the vertical displacements (piston error)
between adjacent segments. If the piston errors between
the segments are greater than approximately λ/20 (where λ
is the wavelength of light), then D is equal to the diameter
of a single mirror segment. Only when the piston errors are
reduced below λ/20 is D given by the total diameter of the
entire segmented mirror (Chanan, 2004). In other words,
the full angular resolution of the entire segmented mirror is
attained only when the piston errors between the segments
are smaller than λ/20.

Clearly, it is imperative that the piston errors be reduced to
less than λ/20 if the optimal resolution offered by the seg-
mented mirror is to be achieved. While each mirror segment
may be raised and lowered independently of the others by a
set of actuators underneath, the issue of accurately deter-
mining the piston errors between the segments to a high
enough precision is non-trivial. For infrared wavelengths
under which atmospheric distortion is not an issue, the
required precision is on the order of 0.1 microns. A human
hair, in comparison, is approximately 30 microns in thick-
ness. This has necessitated the development of what are
known as phasing algorithms: operations used to detect and
correct for discontinuities between mirror segments
through the analysis of various diffraction phenomena
along the segment edges.

Successful detection of piston errors has been achieved in
the current algorithm used at the Keck Telescopes devel-
oped by Chanan et al. (henceforth referred to as the Keck
algorithm). The Keck algorithm relies on the analysis of
diffraction patterns generated by placing a mask that defines
small circular subapertures directly above the segment edges
and analyzing the resulting diffraction patterns. This algo-
rithm has been shown to be reliable in phasing a segmented
mirror to a root mean square piston error of less than 0.1
microns (Chanan, 1988). However, the Keck algorithm
requires the tight centering of the mask such that the circu-
lar subapertures are at the centers of the intersegment
edges. The number of masks and subapertures must also be
increased as the number of mirror segments is increased,
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which may prove to be problematic in larger segmented
mirror telescopes such as OWL.

To resolve the aforementioned problem, another algorithm
for detecting piston errors has been proposed for use in
OWL by Martinez et al. (2002) at the European Southern
Observatory and Laboratoire d’ Astrophysique de Marseille. This
algorithm involves the use of a specially tuned Mach-
Zehnder interferometer and is notable for its absence of a
mask above the segment edges, as in the Keck and other
phasing algorithms. This lack of a mask should, in theory,
simplify the setup and analysis involved in determining the
intersegment piston error.

While promising, the original Mach-Zehnder algorithm
(hereafter referred to as the monochromatic algorithm)
does contain some pitfalls. Specifically, there is a significant
ambiguity in determining the actual piston error due to
aliasing, especially at large piston errors. Essentially, it
becomes impossible to determine the exact piston error
when the error is greater than one wavelength.

In this study, the original monochromatic algorithm was
reproduced by using a computer-simulated segmented mir-
ror whose segments could be individually displaced to sim-
ulate piston errors of various values. The original algorithm
was then modified to use a Gaussian bandpass (light of sev-
eral wavelengths in a Gaussian distribution about a central
wavelength rather than just a single wavelength). This new
broadband algorithm addresses the flaws of the monochro-
matic algorithm, as it does not suffer from ambiguity over
piston errors greater than one wavelength. It simultaneous-
ly retains the advantages of the monochromatic algorithm
since it does not require the presence of a mask, as with the
Keck algorithm.

Monochromatic Mach-Zehnder Algorithm

Overview
In the monochromatic algorithm, monochromatic light
from the telescope mirror is passed through a specially-
tuned Mach-Zehnder interferometer (Figure 1).

In a Mach-Zehnder interferometer, light is split between
two arms, with a phase shift of π introduced each time the
light strikes a mirror (recall that waves incident on a denser
medium are phase shifted in this manner). By summing the
phase differences and recombining at the outputs, it can be
shown that the above setup results in constructive interfer-
ence at one interferogram and complete destructive inter-
ference at the other.

For the monochromatic phasing algorithm, an optical path
difference of l/4 is introduced between the two arms of the
interferometer, while a pinhole is placed in one of the arms.
The pinhole has a Gaussian profile to eliminate diffraction
artifacts that would otherwise result with the sharp edges of
a circular pinhole. The pinhole acts as a low-pass filter,
whereas the entire interferometer acts as a high-pass filter
on recombination due to the phase shifts introduced as a
result of reflection.

The output interferograms are then subtracted from one
another, forming what is referred to as a “differential inter-
ferogram.” This differential interferogram will then contain
a series of fringes along the segment edges, as shown by the
simulated images in Figure 2. It will be demonstrated that
the piston error between adjacent segments can be extract-
ed from the intensities of these fringes, which we refer to as
the “peak to valley” (PtV) value.

Mathematical Background
The electric fields at the interferograms may be described by
this equation:

where k is the wave number of our monochromatic light, C1
and C2 are the amplitudes of light from the two arms, ϕ1
and ϕ2 are the phases from the two arms, and α is the con-
stant optical path difference introduced between the arms.

The interferogram intensities I1 and I2 may then be deter-
mined simply by squaring Equation 1:
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Figure 1
Mach-Zehnder Interferometer Setup
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Subtracting the two interferogram intensities
gives the intensity at the differential interfero-
gram:

Notice that the constant offsets are thus
removed while the intensity of the cosine term
is increased by a factor of two.

Finally, redefining (ϕ1 - ϕ2) as the piston error
δ, and consolidating the constant coefficients
as a single constant term V, the above equation
may be rewritten as:

Thus, the PtV value ν will be proportional to
the cosine of the phase difference resulting
from the piston error. By setting the optical
path difference α equal to λ/4, the argument
of the cosine function is phase shifted by π/2,
converting the cosine to a sine. This allows for
the determination of the relative positions of
adjacent segments, which is demonstrated by
the simulation.

Simulation
The interferograms resulting from the Mach-
Zehnder wavefront sensor detailed above were
simulated via computer. The simulation veri-
fies the analysis and provides a unique oppor-
tunity to modify parameters in a strictly con-
trolled environment, while allowing further
insight into some of the processes that occur.
In the future, it will also be easier to implement
the effects of atmospheric distortion by com-
puter rather than by analysis.

The conditions in the wavefront sensor can be
approximated using Fraunhofer diffraction,
which assumes that the distances involved are
long enough to result in plane waves. The
Fraunhofer diffraction pattern on the image
plane is given by performing a Fourier trans-
form on the incoming wavefront (Hecht,
2001). The wavefronts passing through each of
the two arms of the interferometer must thus
be Fourier transformed twice to generate the
final amplitudes at the interferograms.

A quick look at this process provides some
insight on the function of the pinhole. By per-
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ν (δ) = V cos[k(δ + α)] (4)

I1 − I 2 = 4A1A2 cos[k(ϕ1 −ϕ2 + α)] (3)

Figure 2
Simulated Images: Images in the left column show simulated 2-D images. Images in
the right column are plots of cuts across segment edges.
A) Map of Physical Step Heights
B) Output from One Interferogram
C) Output from the Other Interferogram
D) Differential Interferogram, the Difference between the Two Peaks on the Right

Image is the PtV Value



forming a Fourier transform on the wavefront, it is essen-
tially decomposed into spatial frequencies. The result is the
removal of high frequency contributions, effectively creat-
ing a low-pass filter. By performing an inverse Fourier trans-
form on the filtered function and then subtracting it from
the unfiltered function from the other arm, the result is
essentially a high-pass filter.

The Fourier transform can be calculated numerically to a
high degree of precision using the Fast Fourier Transform
(FFT) algorithm.

Using the above as a basis for the simulation algorithm, a
simulation for the interferogram outputs was created
through the following process:

1) A two-dimensional map of a segmented mirror was
generated, with each segment having a distinct piston
error.

2) The map was then used to generate the values of the
actual electromagnetic waves. The setup calls for two
interferograms, each consisting of the superposition of
one wavefront from each of the two arms. Four com-
plex wavefronts were also needed, each containing its
respective phase shifts due to reflection and the intro-
duced optical path difference of λ/4.

3) An inverse Fourier transform was performed on the
aperture functions that had just been generated to bring
the wavefronts to the focal point. The amplitudes of
the two wavefronts in the arm containing the pinhole
were scaled to account for the spatial filtering by the
pinhole.

4) Finally, the Fourier transform of the four aperture
functions was taken to bring them to the output plane.
The appropriate wavefronts were summed and squared
to generate the intensities of the interferograms. The
two resulting interferograms were then subtracted from
one another to create the differential interferogram.

Notice distinctive fringes that result along the segment
edges in the differential interferogram (Figure 2D). It is the
distance between the amplitudes of these two peaks that we
are concerned with, and it is this value that is denoted in the
previous derivation by ν (referred to as the PtV by Martinez
et al., 2002) The sign of ν is simply a matter of convention.

Simulation Results
Differential interferograms corresponding to various values
of piston error were generated and the PtV values were
measured as shown in Figure 3.

The simulation results show strong agreement with the val-
ues predicted via the mathematical derivation detailed pre-
viously. Recall that if the optical path difference α is set to
λ/4 as in our setup, then ν is given by:

Analysis
The monochromatic algorithm detailed above provides a
relation between the intersegment piston error and the PtV
intensity. However, a closer analysis shows that some signif-
icant drawbacks remain.

The sine function is strictly periodic and repeats itself at
distances in phase separated by integer multiples of λ (recall
that the sign of the PtV is also taken into account).
Therefore it will be impossible to differentiate between a
phase step of δ and δ+λ.

Martinez et al. (2002) proposed to remedy this ambiguity
through the separate use of two or more discrete wave-
lengths of light and determining the piston error from the
relative PtV values at the two different wavelengths.
However, this method is again limited by the periodic nature
of the sine functions, as the relative values will repeat after
a certain distance (Figure 4). While it has been demonstrat-
ed that this distance can be increased above the desired cap-
ture range by careful selection of which wavelengths to use,
it is still worth exploring other methods that will not be
affected by this problem.
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Figure 3
Results of PtV (n) from simulation (vertical axis), plotted with respect
to physical step height (horizontal axis), for λ = 1 micron. As expect-
ed, the PtV values are related to the sine of the piston error.

ν (δ) = V sin[kδ]

Pt
V 

Va
lu

e 
(A

rb
itr

ar
y 

U
ni

ts
)

Piston Error (Microns)

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

(5)



Broadband Mach-Zehnder Algorithm

Overview
To eliminate the ambiguities in the monochromatic Mach-
Zehnder algorithm, light in a Gaussian bandpass is used in
place of monochromatic light, with the setup and analysis
the same as the monochromatic algorithm. It is hoped that
by using multiple wavelengths simultaneously, rather than
separately, as in the original proposed algorithm, we can
eliminate the periodicity in the PtV values with respect to
the piston error.

For the broadband algorithm, we use light in a Gaussian
bandpass. The optical path difference introduced between
the arms of the interferometer is now taken to be 1/4 of
the central wavelength. The width of the Gaussian band-
pass may be modified and will be discussed in the analysis.
Again, analysis of changes in the PtV value is used to deter-
mine the piston error.

Mathematical Background
Since the setup for the broadband Mach-Zehnder algorithm
is virtually identical to the monochromatic algorithm, we
may make use of our previous derivations with minimal
modification to account for the change in bandpass.

Equation 4 still applies in the broadband case, except that
the intensity V is no longer a constant, but is a function of
wave number k. Keeping in mind that the optical path dif-
ference α is taken to be 1/4 of the central wavenumber k0,
the above equation can be re-expressed to give the PtV of a
single wavelength in the broadband case as:

where V(k) corresponds to a Gaussian distribution centered
about k0:

σ is given by:

where ∆λ is the width of the Gaussian distribution (in
microns), and λ0 is the central wavelength of the Gaussian
(in microns).

Thus, summing over all the wavelengths, the result is an
integral over infinity for the broadband PtVs:

Evaluating this integral (Gradshtein et al., 1994), we finally
obtain our new equation for the broadband Mach-Zehnder
algorithm:

Given that we have set the optical path difference α to λ0/4,
it is clear that our values for PtV in the broadband case
behave as a sine wave modulated by a Gaussian distribution.
Thus, our PtV values are no longer periodic, but decay as
the piston error increases.

Simulation
The original simulation for the monochromatic algorithm
can be easily modified for the broadband setup, much as the
equations were modified in the previous section. Note that
there is an integral over infinity when summing the contri-
butions from each wavelength of light.

The complex amplitudes are calculated at the interfero-
grams using the FFT for several equally-spaced values of λ
between the central wavelength λ0 and a distance that is at
least as wide as our Gaussian bandpass ∆λ, with the optical
path difference for each wavelength set to λ0/4. Since the
contributions from the different wavelengths add incoher-
ently, each complex amplitude is squared separately to find
the intensities before summing them, with each intensity
scaled by the appropriate value determined by the Gaussian
bandpass.

Simulation Results
The PtV values plotted with respect to piston error con-
verge to the values predicted by the mathematical model as
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Figure 4
PtV at 1 (blue line) and 2 (red line) microns plotted with respect to
phase step. Notice the repetition of relative PtV values.
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ν (δ) = V cos[k(δ + α)] (6)

V (k) = exp[
−(k − k0)2

2σ 2 ] (7)

σ = π
8ln( 2)

2∆λ
λ0

2
(8)

ν (δ) = V (k)cos[k(δ + α)]dk∫ (9)
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the number of wavelength steps used in the calculation, and
the spread of wavelength values for which they are calculat-
ed, are increased. A plot of the PtV at physical step heights
of (n/20)λ0 (where n is an integer) correlates with the pre-
dicted model (Figure 5).

The convergence can be more clearly seen by a comparison
of the predicted and simulated values at the maxima of
each cycle, i.e. piston errors of (n + 1/4)λ0. This gives the
“envelope” of the PtV function demonstrating the rate of
decay as piston error increases (Figure 6).

Analysis
The above plots both illustrate that the PtV values are no
longer periodic with respect to the piston error but are
modulated by the Gaussian distribution given by:

This decay in PtV as the piston error increases effectively
solves the problems associated with the strictly periodic
nature of the monochromatic algorithm. No longer are
points separated by λ indistinguishable from one another.
With the broadband algorithm it is no longer necessary to
take multiple readings at different wavelengths except per-
haps as an additional check or to detect exceptionally large
piston errors. Nevertheless, it is necessary to piston each
segment by a known amount and make repeated measure-
ments in order to determine one’s position on the modulat-
ing function.

As an additional confirmation of the results, the response
of the PtV values as the width of the Gaussian bandpass is
varied was also observed. As the width of the Gaussian
bandpass decreases, the width of the Gaussian “envelope”
increases. In the case that the Gaussian bandpass becomes
a delta function (width approaches 0), the broadband results
reduce to the monochromatic results discussed in the previ-
ous section, that is to say the PtV values simply behave as a
sine function.

Using the broadband setup, a typical phasing algorithm
might consist of pistoning a mirror segment through a dis-
tance of one wavelength in an attempt to locate a local max-
imum [located every (n + 0.25)λ]. Once a maximum has
been detected, the segment may then be pistoned in steps
equal to one wavelength, thus allowing determination of
location on the Gaussian modulating the PtV values as dis-
cussed above.

Future Work

Work still remains to be done before this algorithm can be
successfully applied in the field. The full effects of the size
of the pinhole in the interferometer have not yet been thor-
oughly tested. In general, the width of the fringes in the dif-
ferential interferogram from which the PtV values are cal-
culated is inversely related to the width of the pinhole, as
expected from the uncertainty principle. For the purposes
of the simulation above, the width of the Gaussian profile
of the pinhole was taken to be 100 pixels in diameter, the
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Figure 5
Results of PtV (vertical axis) plotted with respect to the piston error
(horizontal axis) for broadband case.
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Figure 6
Convergence of simulated (black) and predicted PtV modulating
envelope at values of the piston error equal to (n + 0.25)λ, calculat-
ed using different numbers of wavelength steps. The red line indi-
cates results for wavelength values spread over 0.5 times width of
Gaussian bandpass, green for wavelength values over 1.0 times
Gaussian width, and blue for wavelength values over 2.0 times
Gaussian width.
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total image being a 512 by 512 pixel array. This provided
fringes that were judged to be of an ideal width.

Some factors were ignored in the simulation for the pur-
poses of simplicity. The study ignored tip/tilt errors and
assumed that all errors are in the piston; the effects of
atmospheric blurring warrant further study. Martinez et al.
cover the effects of some of these factors on the
monochromatic algorithm in their original paper (2002).

Conclusions

The monochromatic Mach-Zehnder phasing algorithm pro-
posed by Martinez et al. (2002) has been implemented via
computer simulation. The piston error between adjacent
segments of a segmented telescope mirror has been shown
to be related to the resulting PtV value. Through the simu-
lation results and the mathematical equations involved, a
significant ambiguity in measurement of piston error has
been shown to exist when this algorithm is used, especially
when the piston errors are large.

A broadband modification to the Mach-Zehnder algorithm
involving the use of a Gaussian bandpass has also been pro-
posed and detailed. It has been shown that in the broadband
case, the PtV values decay to zero as the piston error
increases, thus removing the ambiguity in the monochro-
matic case and allowing the measurement of large piston
errors. The broadband Mach-Zehnder algorithm is ideal
because it combines the benefits of both the monochro-
matic algorithm and the Keck algorithm while avoiding
problems associated with both.

The needs of astronomers have often been one of the
greatest driving forces behind the development of optical
technology, from Galileo’s first crude telescopes to the
development of the extremely large telescopes and adaptive
optics of the late twentieth and early twenty-first centuries.
As with the case of nearly all fields of science, technologi-
cal innovations originally intended for astronomy have
often found uses outside their original field in other branch-
es of science, medicine and engineering. Ultimately, this
phasing algorithm makes it an interesting alternative to
existing algorithms for use in segmented mirrors both on
Earth and in space.
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