
Before Vadim Bichutskiy
approached Dr. Lathrop about
becoming his faculty mentor,
he did his homework. He read
Dr. Lathrop’s publications and
was familiar with his interdisci-
plinary approach to research.
Vadim suggests that anyone
interested in undergraduate
research should do the same
before they choose a mentor,
so they can find a professor
whose interests are similar to
their own. Now a graduate stu-
dent at UCI’s Donald Bren
School of Information and
Computer Sciences, Vadim
plans to continue doing
research to develop new drugs
and improve health care. When
he’s not in the lab, Vadim
enjoys swimming, weight lift-
ing, skiing, and playing chess.

This paper is an elegant example of how faculty-mentored under-
graduate research can be both an excellent learning experience for
the undergraduate and a real contribution to interdisciplinary
attacks on important scientific and technological problems of our
day. The topic of this paper, heterogeneous databases, is a difficult
and important problem in computer science. The application is to
p53, which is an important medical problem because it is a central

cancer-related protein. Over half of all human cancers have a mutation in the p53
gene, which inactivates a central tumor-suppressor pathway. Thus, the undergraduate
research activity behind this paper addressed challenging problems on several fronts,
and its successful completion proved to be both interesting and useful.
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p53 is a central tumor suppressor protein that is involved in cell cycle regulation.
It is estimated that more than 50% of human cancers have p53 inactivated due to

gene mutations. Therefore, the ability to restore function to p53 could have an enor-
mous impact on cancer treatment. This project developed a heterogeneous database
to support the search for small molecules that restore function to p53. We used a
hybrid strategy that combines the data warehousing and mediation approaches to
data integration. The database integrates small molecule data, such as computational
docking results, with functional and structural assay results. It unites different
research laboratories into a common framework, accessible through the Internet by
all involved researchers. It provides for increased productivity and more efficient data
sharing. This results in improved chances of finding small molecules that restore
function to p53 and can be developed into new anti-cancer drugs.

1 1T H E U C I  U N D E R G R A D U A T E R E S E A R C H J O U R N A L

A u t h o r

A b s t r a c t

F a c u l t y  M e n t o r

Richard Lathrop
Donald Bren School of Information
and Computer Sciences



Introduction

The central tumor suppressor protein p53 provides a poten-
tial target for new anti-cancer drugs. Toward this end, dif-
ferent p53 data is produced by four collaborating research
laboratories at the University of California, Irvine (UCI):
computational docking (in the Donald Bren School of
Information and Computer Sciences), small molecule syn-
thesis (Department of Chemistry), functional assays
(School of Medicine), and structural assays (School of
Biological Sciences).

Our goal is to support their efforts by developing a hetero-
geneous database that integrates each laboratory’s data.
Heterogeneous database integration is a challenging topic,
which is important in several application domains
(Karasavvas et al., 2004), and is one of the most important
computer science problems today (Zhou et al., 1995). It is
especially difficult in bioinformatics because of the inherent
complexity of the domain, where (a) most rules have excep-
tions; (b) there is rich variety in data, from DNA and pro-
tein sequences, to three-dimensional images, to text files;
and (c) there are complex relationships between structures
(Karasavvas et al., 2004).

We interviewed relevant researchers to find out about their
data and designed a database schema that captured it. Then,
we integrated the heterogeneous databases. Finally, we
wrote queries and stored procedures to retrieve the request-
ed information. The schema is capable of storing all of the
data. We are currently integrating data from the four labo-
ratories listed above.

p53 Background
The tumor suppressor protein p53 helps prevent uncon-
trolled cell growth. It has been identified as the main pro-
tein that protects humans from cancer. It performs its
function by acting as a transcription factor, a protein need-
ed to initiate transcription, for genes involved in DNA
repair, cell cycle arrest, and apoptosis (programmed cell
death) (Baroni et al., 2004). Thus, p53 prevents a cell from
passing on mutations due to DNA damage. If mutations
increase and the cell survives through many divisions—as
is more likely if the p53 gene is defective or missing—can-
cer may result (Campbell and Reece, 2002). In fact, it is
estimated that more than 50% of human cancers have p53
inactivated due to gene mutations (Friedler et al., 2002).
Furthermore, cancers with inactive, mutant p53 are diffi-
cult to treat because they are especially resistant to radia-
tion and chemotherapy (Bullock and Fersht, 2001; Bykov
et al., 2002).

The p53 protein is a tetramer consisting of the amino-ter-
minal transactivation, core DNA-binding, carboxy-terminal
tetramerization, and regulatory domains. Approximately
95% of cancerous mutations lie in the core DNA-binding
domain and prevent p53 from binding to DNA, which it
must do to perform its function (Bullock and Fersht, 2001).
Further, 75% of p53 gene mutations are single missense
mutations, in which a single base substitution in the protein
coding region of a gene results in an amino acid substitu-
tion in the protein (Bullock and Fersht, 2001). Therefore,
mutant p53 is mostly a full-length protein with a single
amino acid change in the core DNA-binding domain
(Bullock and Fersht, 2001).

Gene mutations in p53 can be divided into several categories.
Among them, DNA-contact mutations (R248, R273) result
in loss of DNA-binding residues and “structural mutations”
result in structural changes to the core DNA-binding
domain (R175, G245, R249, R282). The six most frequent
cancerous mutations are the “hot-spots” R175H, G245S,
R248Q, R249S, R273H, and R282W (Friedler et al., 2002).
Figure 1 shows the core DNA-binding domain of p53 pro-
tein bound to DNA. The six most frequently mutated amino
acids in human cancers are labeled and shown in yellow. All
of these residues are important for p53 binding to DNA.

Database Background
Biomedical data is often distributed among multiple
databases, which frequently have different schemas and are
implemented with different technologies (Markowitz and
Ritter, 1995). A database schema includes the gross struc-
ture and constraints on the database. Database hetero-
geneities, or differences, can make access to information
difficult (Sujansky, 2001). Thus, the need arises for hetero-
geneous databases. A heterogeneous database unites various
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Figure 1
Core DNA-Binding Domain of p53 Protein (Modified from Cho et al.,
1994)



databases, which support different schemas and technolo-
gies, by providing a uniform database schema and querying
capabilities that integrate distributed data (Sujansky, 2001).
The process of integrating data from multiple, heteroge-
neous sources is called heterogeneous database integration
(Sujansky, 2001). In database integration, stored procedures
and views are often created to facilitate querying. Stored
procedures are operations stored within the database server
that are available to clients. Views are “virtual” tables that
are not physically stored in the database. Views provide
alternate ways of looking at a database to different users.
Because of database differences, heterogeneous database
integration is a difficult but important problem in
biomedicine (Sujansky, 2001).

Heterogeneous database integration is a topic that has been
studied in the database research community for many years.
However, no preferred solution or consensus of approach
currently exists (Widom, 1996). The three most common
approaches to heterogeneous database integration are
(Garcia-Molina et al., 2000): federated systems (Sheth and
Larson, 1990), data warehousing (Widom, 1995), and medi-
ation (Weiderhold, 1992; Domenig and Dittrich, 1999).

Federated systems use decentralized architectures in which
one-to-one connections are implemented between all pairs
of databases that need to share data. These connections
allow a database D1 to query another database, D2, in terms
that D2 can understand. Software components are written
to translate queries between the databases.

In data warehousing, data from each source is extracted,
merged, and stored in a centralized repository (warehouse).
The warehouse is a database with a global schema that com-
bines the schemas of the sources. Queries on the system are
evaluated at the warehouse without accessing the original
sources. Client updates to the warehouse are usually not
allowed since they are not reflected in the original sources
and would make the warehouse inconsistent with the
sources. Instead, the warehouse is updated from the data in
the sources. There are multiple policies for updating the
warehouse (Garcia-Molina et al., 2000). Implementations of
data warehousing approach include Squirrel (Hull and
Zhou, 1996) and WHIPS (Hammer et al., 1995).

In mediation, a module called a “mediator” accepts a query
from the client, determines the sources needed to answer
the query, and decomposes the query into subqueries for
each required source. The subqueries are translated to the
source-specific query language via modules called “wrap-
pers.” The results from the sources are translated back into

the common query language by the wrappers. Finally, the
mediator obtains results from the wrappers, combines
them, and returns the final answer to the client. Mediation
can be query-centric or source-centric (Li, 2001). Mediation
is one of the most common approaches to data integration
in bioinformatics (Karasavvas et al., 2004). Systems that use
the mediator approach include TSIMMIS (Chawathe et al.,
1994), Information Manifold (Kirk et al., 1995), SIMS
(Arens et al., 1996), and Carnot (Singh et al., 1997).

Hybrid Strategy
Ashish (2000) proposed a hybrid strategy to data integration
that combines the benefits of the data warehousing and
mediation approaches. In the hybrid strategy, part of the
data is fetched on demand as in the mediation approach, but
other data is collected, stored, and integrated in the ware-
house. Many of the complex, large-scale database applica-
tions of the future will require both mediation and data
warehousing (Widom, 1996). While the best approach varies
with the application, it is likely to be a hybrid strategy based
on the combination of different approaches (Eckman,
2003). However, the hybrid strategy is less commonly dis-
cussed in the literature.

Materials and Methods

The database was developed using Microsoft SQL Server
2000, a client-server database management system (DBMS)
used to create, modify and query a database. We conducted
requirements analysis by interviewing p53 researchers. We
needed to know what data each laboratory produced, what
information they wanted to see from other laboratories, and
what queries they wanted to perform on the database. Based
on these interviews, we designed a database schema. We
integrated computational docking data via a connection to
the research laboratory’s PostgreSQL database. The con-
nection allowed us to query the laboratory’s database. Then
we integrated functional assay data by importing it into the
project’s SQL Server database.

Project Description
Query responses were gathered and categorized from the
four research laboratories. Investigators included Dr.
Darren Holmes (Department of Chemistry), Dr. Richard
Chamberlin (Department of Chemistry), Dr. Felix Grun
(School of Biological Sciences), S. Joshua Swamidass
(Donald Bren School of Information and Computer
Sciences and School of Medicine), and John Coroneus
(School of Biological Sciences). We also collaborated with
Dr. Rainer Brachmann (School of Medicine), Dr. Pierre
Baldi (Donald Bren School of Information and Computer
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Sciences and School of Medicine), and Dr. Richard Lathrop
(Donald Bren School of Information and Computer
Sciences and Department of Biomedical Engineering).

The goal of the project was to develop a heterogeneous
database that integrates various data produced by four col-
laborating research laboratories at UCI. The data relates to
experiments performed on small molecules with the goal of
finding small molecules that restore function to p53 and can
be developed into new anti-cancer drugs.

Computational docking is performed on a library of com-
pounds to identify small molecules that have the potential
of restoring function to p53. Each docking experiment is
done on a receptor, which is typically a protein. A receptor
has binding sites to which small molecules bind. A molecule
may have multiple conformations, the three-dimensional
shape defined by angles of rotation about the molecule’s
bonds. The conformation of a molecule is specified in a
mol2 file. Docking uses computer algorithms to model how
a molecule binds to a binding site of the receptor. The
result of a docking experiment is a score that measures the
ability of the molecule to bind to the receptor’s binding site.
Molecules with the best scores are synthesized. Finally, the
synthesized molecules are assayed on the p53 mutants to
determine what effect they have on the mutants.

The database will allow p53 researchers to share data, pro-
vide their results, and facilitate efficient communication
across laboratories in a common and convenient framework
accessible through the Internet. Thus, the database would
greatly improve the chances of discovering new anti-cancer
drugs. However, the database should not simply reproduce
the sources’ data. The database would store only the results
of experiments on small molecules that at least one labora-
tory feels have potential of restoring function to p53 and,
thus, would be interesting to other laboratories. In addition,
the database should not store all of the data features. It
should store only the most important attributes of the data.

Database Design
After the interviews, we developed a database schema that
captured the data produced by all of the research laborato-
ries. The database design schema is shown in Figure 2.
Each molecule (“Molecules” table) may have more than
one conformation (“Conformations” table) and it may
come from more than one source (“Sources” table). There
are two types of experiments (“Experiments” table) that
are done on molecules: docking and assays. We stored the
results (“DockingResults” and “AssayResults” tables) of
these experiments. Each type of experiment is done on a

particular p53 mutant (“Mutants” table) and has a score
(“Scores” table) associated with it.

The schema design proved to be a difficult task. We had dif-
ficulty determining exactly what data was needed and how
to store it. As a result, we developed several designs before
we found a good solution. During the schema design, we
realized that the data consisted of docking and assay results
and each result was associated with different conditions:
experiments, mutants and molecules. Thus, the schema fol-
lows a design pattern of having results tables related to
“Experiments,” “Mutants” and “Molecules” tables. This
makes the schema flexible to changes. If a new laboratory
were to become part of the project that produces some
data, we would create a new results table with relationships
to “Experiments,” “Mutants” and “Molecules” tables.
Alternatively, if a new condition were created, we would
create a new condition table with relationships to all results
tables.

Data Integration
Following the development of the database schema, the
next step was to input and integrate into the database the
data from all of the research laboratories. Figure 3 shows
the project’s system architecture and the hybrid strategy to
data integration.

We integrated computational docking data into the
database by connecting the project’s Microsoft SQL Server
database to the laboratory’s PostgreSQL database via Open
DataBase Connectivity (ODBC), a standard database
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p53 Database Design Schema



access method that makes it possible to access any data
from any application. The project database runs on the
Windows server while the laboratory database runs on the
Linux server. We linked the laboratory’s database server
with the project’s database server via the “Linked Servers”
feature of Microsoft SQL Server. Then, the laboratory
built a query-based view that contained the docking infor-
mation that we captured in the project database. Finally, we
queried the view to obtain the necessary information.
Figure 4 shows the results of a query that retrieved com-
putational docking scores from the laboratory’s database.
The scores consisted of a molecule ID (mid), receptor ID
(rid), score, and score name.

We integrated functional assay data by importing it into the
project’s database. Because functional assay data was stored

in Microsoft Excel spreadsheets and changed periodically,
we imported it manually into the project’s database via phys-
ical file transfer. Data transformation was performed on the
functional assay data via complex queries before it was
inserted into the database tables.

The project’s SQL Server database is both a mediator and a
data warehouse. Computational docking data is queried on
demand by accessing the laboratory’s PostgreSQL database
without importing it into the project’s database. The ODBC
driver for PostgreSQL acts as a wrapper that translates a
query written in SQL Server into a query that PostgreSQL
understands. Thus, for docking data, the project’s database
acts as a mediator. On the other hand, functional assay data
is imported into the SQL Server database, which acts as a
warehouse.

Hybrid Strategy Guiding Principles

There are many ways to create a hybrid database architec-
ture. One alternative to the project’s hybrid strategy is to
treat the data warehouse like a data source with a mediator
architecture (Voisard and Jurgens, 1998). It is a major design
decision to determine what part of the data to import into
the warehouse and what part to query on demand. We con-
sidered the following principles in the design of a hybrid
strategy to data integration:

Changes to data. Data that changes often should be queried
on demand. The mediator approach was chosen for dock-
ing and small molecules because this data changes often.

Size of the data. Larger data should be queried on demand.
The docking and small molecule data potentially could be
extremely large. Thus, we chose the mediator approach for
this data.

Availability of sources. Data from sources that are always avail-
able should not be in the warehouse. The interviews indi-
cated that the laboratories’ PostegreSQL and MySQL
databases would be reliable most of the time.

Required query processing time. The shorter the required
response, the greater the need to import data into the ware-
house. Although queries on docking and small molecules
may take some time to process, we decided to query them
on request because of the potentially large size of query
results and the frequent changes to the data.

Predictability of queries. Predictable queries on data that does
not change often should be written in advance with the
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The Results of a Query that Returned p53 Docking Scores Data



results stored in the warehouse. In addition, knowledge of
the queries to be performed on the system should be taken
into consideration during global schema design. Some of
the important queries to be performed on the system were
provided by the researchers. We implemented these queries
as stored procedures to call from the Internet. In addition,
we tried to design the schema in such a way that the joining
of tables would be as efficient as possible.

In theory, one would like to use all of the principles in an
optimal way. In practice, however, there are trade-offs that
need to be made between the principles. For example, we
decided to use the mediator approach for docking and small
molecule data even though some queries may take some
time to process. On the other hand, the size of the data and
the frequency of data updates clearly favored this approach.

Conclusion

The database allowed p53 researchers to share data, provide
their results, communicate with each other more efficiently,
and improve their chances of finding new anti-cancer drugs.
This project demonstrates that a hybrid strategy is a viable
approach to heterogeneous database integration in
biomedicine. It combines the benefits of the data ware-
housing and mediation approaches. Mediation should be
used for data that changes rapidly such as p53 docking
scores, for queries on large amounts of data, and for
sources that are reliable. Data warehousing should be used
for data that changes rarely such as functional assays, for
data with predictable queries, and for queries requiring high
performance but not necessarily over the most recent state
of the information. Furthermore, this project could lead to
further applications of the hybrid strategy to heterogeneous
database integration in bioinformatics.

Developing a database that integrates data from different
sources is a difficult task; requirements analysis is essential.
Multiple design iterations are inevitable. It is important to
understand what data needs to be stored, what data is pro-
duced by each source, and what queries are to be performed
on the database. In heterogeneous database development,
schema design is the most critical, challenging and time-
consuming phase. The design difficulty is compounded in
that some sources store their data in various software sys-
tems such as Microsoft Excel and text files. This also makes
data integration more difficult because there is no standard
method of connecting to the data.

In the future, we hope to integrate the rest of the p53 data,
small molecule synthesis, and structural assays into the

database. We would like to write stored procedures that
allow for automatic data updates of the database.
Furthermore, we hope to develop a user-friendly Web
front-end that allows p53 researchers to query the database
and obtain necessary information.
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