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The positions of thousands of surface and subsurface drifters
deployed throughout the oceans are tracked daily in order to mon-
itor the oceans’ circulation. The drifter trajectories, when combined
with an ocean circulation model during data assimilation, provide
insight into such significant variables as temperature and velocity.
Data assimilation methods require the Lagrangian drifter position
data to be converted into an Eulerian velocity field on the fixed

model grid. An unfortunate result of this conversion is that some information with-
in the data gets thrown away. In an effort to extract more of the useful information,
Andrea Steinberger successfully tested a new method, using the drifter data to esti-
mate a sub-gridscale eddy-diffusivity in addition to the large-scale flow field.
Focusing on idealized models, Andrea developed an understanding of the limitations
and pitfalls of the method’s implementation. Encouraged by Andrea’s results, our
group is currently extending this method to more complex ocean models.
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Anew method for estimating advection and diffusion in an ocean basin from
Lagrangian data is developed using a simple box-model approach and the

method of maximum likelihood. This method estimates both advective and diffusive
flow concurrently, which is not possible using existing methods. Computer simula-
tions of one- and two-box ocean models are used to generate synthetic Lagrangian
data on which the method is tested. In these models, true flow parameters are defined
then recovered by maximizing the likelihood function of the one- and two-box prob-
ability models. The relative likelihood function is used to extract information regard-
ing the consistency of the parameter estimates, while ensemble means are used to
determine the method bias. For both the one- and two-box probability models, the
method returned flow estimates that were consistent and unbiased in the limit that
the number of Lagrangian drifters, N, became large. Limitations to concurrent esti-
mation of the advective and diffusive flows were observed for small N, but were
absent for large N. Techniques used in this study show capacity for use in planning
Lagrangian drifter studies. The method shows potential for use in optimizing data
assimilation in ocean circulation models, which are subsequently used in climate
models to study global climate change.
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Introduct ion

The ability to describe and model the world’s oceans is lim-
ited by the logistical challenge of observing the ocean on a
global scale (WOCE, 1997). As a result, ocean models are
much less advanced than their atmospheric counterparts
(Pinardi et al., 2002). Atmospheric modeling enjoyed a veri-
table renaissance age in the latter half of the 20th century
through the advance of observational and computational
technology that allowed the development of realistic atmo-
spheric models. However, similar advances have yet to be
made in the field of oceanography, though efforts have
accelerated since the 1990s, bringing ocean modeling to a
similar caliber as atmospheric modeling. Ocean models have
lagged behind atmospheric models for two primary reasons.
First, the size and turbulance of the ocean limits the amount
of spatially and temporally representative observations that
can be made (NRC, 1999). Second, the geometry of the
ocean is more complex than the atmosphere and a fine-grid
scale is necessary to resolve the turbulent eddy motions that
characterize ocean dynamics (Hartmann, 1994).
Consequently, ocean models require greater computational
power than atmospheric models, which have only recently
become available.

Observational and computational technology has now
advanced to a degree that reliable modeling of the ocean
can become a reality. The impetus to develop these models,
however, is not purely esoteric. Current scientific focus on
climate change and the potential impact of global warming
has served to bolster the field of physical oceanography.
Because the ocean is a major reservoir of heat, freshwater
and carbon, it plays an integral role in the climate system
(Haine and Hall, 2002; Falco et al., 2000; WOCE, 1997).
Developing valid ocean models could help scientists under-
stand, for example, the ability of the ocean to act as a sink
for atmospheric carbon dioxide (CO2), one of the leading
causes of global warming. This would would help scientists
develop more accurate predictions of the rate and magni-
tude of potential global warming due to anthropogenic
emissions of CO2.

Purely atmospheric models are incapable of predicting
changes in atmospheric conditions more than a week into
the future (Hartmann, 1994), and are therefore not reliable
for predicting the long-term effects of global warming.
Long-term predictions require incorporating the ocean’s
influence into climate models. This influence had been
neglected until recently because the ocean was not believed
to have a significant influence on the atmosphere outside
tropical regions (Colling, 2001), global observations of the

ocean were limited spatially and temporally, and adequate
models coupling the ocean and atmosphere had not been
developed (Colling, 2001). A thorough understanding of
ocean dynamics could serve to extend the predictive capa-
bilities of climate models.

Observational data is essential for developing and validating
realistic ocean models. Between 1990 and 1997, scientists
from 30 nations collected shipboard measurements and
remote satellite observations of the world ocean during an
effort known as the World Ocean Circulation Experiment
(WOCE). A major component of this project was the
development and deployment of autonomous Lagrangian
ocean drifters designed to collect information about ocean
currents and various physical parameters, such as tempera-
ture and salinity. This information was gathered for assimi-
lation into ocean models, which could then be coupled with
atmospheric models to study global climate change. The
success of WOCE served as a catalyst for the field of phys-
ical oceanography.

Current ocean circulation models are based exclusively on
the fundamental equations of motion that govern fluid
dynamics in the ocean. Because fluid motions in the ocean
are turbulent and chaotic, a modeled state of the ocean will
eventually diverge from the true state. Therefore, ocean
models require the assimilation of observational data to
constrain the model to remain consistent with the true state
of the ocean. Assimilation is essentially a technique used to
“remind” the model to stay on track. Two types of data can
be used for assimilation into ocean circulation models,
Eulerian and Lagrangian, and both have advantages and dis-
advantages.

Eulerian data is logistically difficult to obtain because this
approach involves measuring current velocity in the ocean
at a fixed point using stationary buoys or directly from
research vessels. The Eulerian method is expensive in terms
of equipment and time since making current measurements
across the ocean breadth and depth is difficult and achiev-
ing spatial homogeneity is nearly impossible (Rhein, 2000).
The advantage of using Eulerian data is that it can be direct-
ly assimilated into ocean models, which are most easily for-
mulated in terms of an Eulerian representation of the flow.
In fact, existing data assimilation procedures can only make
use of this data.

Lagrangian data is logistically more feasible to obtain. The
Lagrangian method involves observing a material fluid ele-
ment that moves freely with the currents in the ocean. The
path of a point particle is known as a Lagrangian trajectory,
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thus Lagrangian ocean drifters are used to obtain these tra-
jectories. These drifters are deployed in the ocean and
allowed to move with the currents, intermittently relaying
positional information via satellite to a land-based station.
Lagrangian drifters allow for greater spatial coverage of the
ocean with lower operational expense. Technologically
advanced drifters may also have the capacity to study the
ocean at varying depths since many are designed to drift at
pre-determined depths. The disadvantage to using
Lagrangian data is the complexity of assimilating this math-
ematically disparate data into Eulerian circulation models.

The relative ease of obtaining Lagrangian data and the
greater spatial resolution this data offers outweigh the ben-
efit of using Eulerian data to validate ocean circulation
models, which is the simplicity of data assimilation Using
Lagrangian data necessitates the development of methods
for converting Lagrangian position data into an Eulerian
velocity field for assimilation into circulation models.
Accepted methods of data transformation include optimal
linear interpolation of Lagrangian position data and projec-
tion onto an Eulerian grid (Molcard et al., 2003; Lavender et
al., 2000), and/or normal mode analysis for reconstruction
of the Eulerian velocity field from the Lagrangian data
(Poje et al., 2002; Toner et al., 2001). These methods fail to
distinguish between advective and diffusive circulation–two
types of fluid motion that define circulation in ocean mod-
els. However, an indirect method for estimating diffusivity
from Lagrangian data has been studied (Belluci et al., 2001;
Falco et al., 2000; Buffoni et al., 1997). This method
involves reconstructing the Eulerian velocity field and then
using the velocity field to integrate the advection-diffusion
equation. Estimation of diffusivity, in addition to the advec-
tive flow, is important for resolving the smaller-scale trans-
port properties of the ocean.

In this study, a new method is developed for estimating
advective flow and diffusivity fields from Lagrangian data
as a first step toward assimilating Lagrangian data into
ocean models. This method differs from the standard
approach in that the advective and diffusive flows are esti-
mated directly and concurrently without first converting
the Lagrangian position data into velocity data. The advec-
tive flow and eddy diffusivity are then parameters within
the model that can be estimated using the method of max-
imum likelihood.

The method of maximum likelihood is a statistical tech-
nique for determining the most probable parameter, in this
case the eddy diffusion and advective flow, based on
observed data (Wilks, 1995). Some of the benefits of this

method include a sensitivity to sample size, data dependen-
cy, and simple extension of the theory to multiparameter
estimations (Whittaker, 2002). Using the method of maxi-
mum likelihood, the most probable parameter is determined
by maximizing the likelihood function, which is the proba-
bility that a drifter will move from point A to point B in a
given time. This method has the added benefit of being
universally applicable to any region of the ocean.

To develop and
test this method,
one- and two-box
models were for-
mulated in which a
marginal sea
exchanges fluid
with the open
ocean (Figure 1).
These models
were used to gen-
erate synthetic
drifter data for a
fixed set of flow
parameters. The
method of maximum likelihood to return these flow param-
eters from the simulated drifter data. The method’s success
was tested by comparing the estimated flow parameters to the
true values.

Theor y

One-Box Model
One-Box Probability
Model
We modeled a
marginal sea as a well-
mixed box of uni-
form depth and vol-
ume V in steady state
with the open ocean
(Figure 2). A steady
exchange of fluid
between the marginal
sea and the open
ocean is assumed, and
is designated by the
flow parameter q.

Assuming a drifter is deployed in the marginal sea at time t
= 0, the probability that it is in the marginal sea at time t =
0 is equal to unity. The initial condition expressed in terms
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of the probability density (per unit volume) is then given by:

As time progresses, the float or drifter circulates out of the
box under the influence of the exchange flow q. The rate of
change of float density in the marginal sea can be described
by the following differential equation:

Equation 1.2 is a first-order differential that can be solved
analytically. Subject to the initial condition (Equation 1.1),
its solution is:

The probability that a float is still in the box at a later time,
t > 0, given that it was in the box at time t = 0 is:

Therefore, the probability that the float escaped from the
marginal sea before time t is:

where M(t) is the cumulative distribution function for the
times at which each individual float escaped from the
marginal sea (escape times). Taking the derivative of M(t)
with respect to time gives the probability density (per unit
time) that a given float will escape from the marginal sea at
time t,

where the last equality follows from Equation 1.3. The
probability model for the float escape times is then:

Parameter Estimation in the One-Box Model
The likelihood function for the one-box model is intro-
duced to estimate the exchange flow parameter q from a set
of observed float escape times {t1, t2, t3,…tn}. The likeli-
hood function, L(q), is proportional to the probability of
observing the data for a given value of q:

where K is an arbitrary constant of proportionality. Since
the escape times are independent, the probability relation-
ship in Equation 1.8 can be expressed as a product of the
individual probabilities:

Using Equations 1.6 and 1.7, the likelihood function for this
system then becomes:

which simplifies to:

Note that the factor of (dt)n does not depend on q and can
be folded into the constant K. The most likely value for q is
then the maximum of L(q). To maximize the likelihood
function in Equation 1.11, it is convenient to first take the
natural logarithm. Because the log-likelihood is a monoton-
ic function, both the likelihood and log-likelihood functions
are maximized by the same parameter value. The natural
logarithm of L(q) is:

and the derivative of Equation 1.12 with respect to q is
then:

Setting Equation 1.13 equal to zero and solving for q gives
the maximum likelihood estimate (MLE) of the exchange
flow between the marginal sea and the open ocean

where q is the MLE of the flow parameter q expressed as a
function of the volume, the number of floats deployed n,
and a set of observed escape times ti .

The confidence in the MLE can be assessed from the rela-
tive likelihood function (RLF), which is defined as:

This function gives the likelihood of alternative flow values
relative to the MLE. For example, an estimate for q such
that R(q) = 0.10 is one-tenth as likely as the MLE, suggest-
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ing that it is an implausible parameter. Estimates for q that
fall in the range bounded by 0.10 ≤ R(q) ≤ 1 are considered
plausible estimates. The relative likelihood is best under-
stood in terms of its inverse relationship to the confidence
interval. A confidence interval of 90% describes the most
probable parameter estimates whereas a 10% likelihood
interval describes the most likely parameter estimates. The
10% likelihood interval is defined at R(q) = 0.10  and is the
benchmark used for measuring the certainty of the flow
parameter estimates.

Two-Box Models
Developing two-box models is the next step to achieving
greater resolution of circulation in a marginal sea. The
method for developing the one-box model can be applied to
the two-box model, though the complexity of parameter
estimation is greater.

Two types of two-box models were developed (Figure 3).
Both use essentially the same notation as that used for the
one-box model, and with subscripts to differentiate between
the two boxes, the additional flow parameters, and the prob-
ability densities. Boxes one and two are denoted, respec-
tively, as B1 (with volume V1) and B2 (with volume V2); the
flow between B1 and B2 in the type A model is denoted as
qd, and the flow between B2 and the open ocean is denoted
as qs. For the type B model, both B1 and B2 have exchange
flows to the open ocean denoted as qs1 and qs2, respectively.
The type B model also contains a recirculation flow qd

between B1 and B2, and a net current qc that flows from the
open ocean through the marginal sea and back to the open
ocean. The probability density of floats (per unit volume)
in B1 and B2 is denoted by C1(t) and C2(t) respectivel, for
both two-box models.

The type A and type B models offer differing perspectives
on circulation in a marginal sea. The type A model is split

into two boxes, only one of which exchanges directly with
the open ocean. This simulation mimics deep ocean basins
in which fluid furthest from the outlet may be hindered
from flowing directly to the open ocean by turbulent eddy
motions within the basin. Similar to the one-box model, the
type A model depicts only recirculating flows (qd and qs), in
which there is no net flow to the open ocean. The type B
model contains recirculating flows (qd , qs1, and qs2) as well as
a net current (qc ). In this model, both boxes communicate
with the open ocean, offering two means by which floats
can leave the marginal sea. There is also a net flow through
the boxes of the marginal sea representing a general direc-
tional current.

At the boundaries between the boxes there is a given flow
in and a given flow out. When there is a net flow across a
given boundary it is referred to as an advective flow.
Balanced flows in and out of a box are considered recircu-
lating, or diffusive, flows. Advective flows can either be pos-
itive or negative, while diffusive flows are always greater
than zero. Ultimately, the parameters estimated in these
models require further manipulation based on more explic-
it characterization of the marginal sea of interest (i.e. cross-
sectional area of the fluid flux), before they can be exactly
labeled as diffusive and/or advective. To avoid unnecessary
complexity in developing this method, the models were not
parameterized to the extent necessary to define the precise
diffusive and advective flows. It suffices, however, to say
that the estimated flows can be converted to these respec-
tive values later.

Type A Probability Model
It is assumed that a float is deployed in the marginal sea at
time t = 0 to establish the probability that it will circulate to
the open ocean at time t. For a two-box model, a float can
be deployed in either B1 or B2. The initial condition, in terms
of float densities, that the float was deployed in B1 is given
by:

where s is the position of the float. If the float is in B1, then
s is an element of B1 (s ∈ B1). This condition is denoted as
i = 1 (or j = 1) (Table 1). Hence the initial condition, in
terms of float densities, that the float was deployed in B2 is
given by:
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Figure 3
Two-box models of a marginal sea with exchange flows to the open

ocean via recirculation flows qd and qs in the type A model, where

only qs exchanges with the open ocean; and via recirculation flows

qd, qs1 and qs2, and net current qc, in the type B model, where both

boxes exchange with the open ocean.  Note that the type B model

reduces to the type A model for qc = 0 and qs1 = 0. 
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where Equation 2.1a is the initial condition that the float is
in B1 at time t = 0 given that it was deployed in B1, and
Equation 2.1b is the initial condition that the float is in B2

at time t = 0 given that it was deployed in B1. Similarly,
Equation 2.2a is the initial condition that the float is in B1 at
time t = 0 given that it was deployed in B2, and Equation
2.2b is the initial condition that the float is in B2 at time t =
0 given that it was deployed in B2. The simplified notation
in Equation 2.2 will be used for the remainder of this paper.

The conservation equations for the probability of finding a
float in B1 or B2, expressed in terms of the float densities
(C (i,t  j,0)) are:

and

where j = 1 or 2. Given either Equation 2.1 or Equation 2.2,
the general solution to Equation 2.3 and Equation 2.4,
respectively, is:

where A is the 2 x 2 matrix:

The probability that a float is still in the marginal sea at
some later time t is given by the sum of the probabilities
that it is in B1 at time t or B2 at time t. For the case where
the float started in B1 at time t = 0, the probability is
obtained by:

Similarly the probability the float started in B2 at time t = 0
is obtained by:

Given that the probability a float is in the marginal sea at
time t = 0 is equal to unity, the probability that the float
escapes to the marginal sea at time t given Equation 2.7 and
Equation 2.8 is:

and

where Equation 2.9 represents the probability that the float
escapes from the marginal sea before time t given that it was
in B1 at time t = 0, and Equation 2.10 represents the proba-
bility that the float escapes from the marginal sea before time
t given that it was in B2 at time t = 0. It was assumed that
once a float escaped from the marginal sea it would stay in
the open ocean and not return to the marginal sea.

The derivatives of Equation 2.9 and Equation 2.10 with
respect to time give the probability density per unit time that
the float escapes from the marginal sea before time t:

Because of the greater complexity of a two-parameter esti-
mation, it is not practical to solve these equations analyti-
cally, as was done with the one-box model. Instead, a
numerical approach is necessary. In developing the two-box
models, both were tested using the analytical and numerical
approaches.

Type B Probability Model
The method for solving the type B two-box model is the
same as that for the type A two-box model. The only dif-
ference is the addition of a net advective current in the type
B model and the fact that floats can escape to the open
ocean from both boxes. Only the recirculation flows were
estimated in the one-box and type A two-box models. The
type B two-box model shows the utility of this method for
estimating both the diffusive and advective parameters.

The conservation equations for the probability of finding a
float in B1 or B2 in the type B model are:

and 
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The expressions in Equation 3.1 and Equation 3.2 allow for
the advective flow qc to reverse direction, as might be the
case under natural conditions, such as during the monsoon
season in the Indian Ocean, when a reversal of the general
circulation forces moisture over the Indian subcontinent.
This formulation is important when there is not a priori

knowledge of the direction of the advective flow.

Again there were two possible initial conditions in which the
floats were deployed in B1 or B2. The mathematical expres-
sions for these initial conditions are the same as for the type
A model. The general solution to this system is formally
also the same as Equation 2.5, except that A is given by the
2 x 2 matrix:

where qc = (qc + qc ) and qc =(qc - qc ). In the general
case, the type B two-box model is a four-parameter estima-
tion that cannot be solved analytically. For simplicity, the
type B model is reduced to a two-parameter estimation by
setting the recirculating flows equal to each other, qd = qs1 =
qs2. We also set the advective current qc one order of magni-
tude larger than the recirculating flows to more realistically
represent the relative magnitude of these flows in a true
ocean basin. The two unknown parameters qd and qc are
determined.

Parameter Estimation in the Two-Box Models
The two-box model likelihood function is the probability of
generating the observed escape times given the unknown
parameters (qd and qs ; qd and qc). Therefore, the likelihood
function for the type A two-box model is:

and for the type B two-box model is:

The float escape times given by t1 through tn represent
deployment of the floats in B1, while the escape times tn+1

through tn+m represent the float escape times given that the
floats were deployed in B2.

Because the escape times are independent, Equations 4.1
and 4.2 can be rewritten as the product of the probability
densities evaluated at the observed escape times:

The log-likelihood functions for both two-box models are
then given by:

The maximum of Equation 4.4 gives the MLEs of qd and qs

for the type A model, and the MLEs of qd and qc for the
type B model.

Test ing the Method

The method of maximum likelihood was tested on the one-
and two-box models. For each box-model type, a set of
escape times was generated by simulated random exchange of
floats between the marginal sea and the open ocean. For the
two-box models, two possible conditions of initial float
deployment were simulated, and the escape times from one
simulation of each were pooled for the estimation step.
Ensembles of 10 simulations were conducted with N = 10,
50, 100, 1,000, and 10,000 floats per box. The MLE was cal-
culated for each run in an ensemble, and the mean and stan-
dard deviation of each ensemble were calculated. Ensemble
averages yield valuable information about the nature and
magnitude of uncertainty in an estimation method (Wilks,
1995). Ensemble averages were used to evaluate the bias, if
any, associated with using the method of maximum likeli-
hood to estimate the most likely flow parameter(s) given a set
of data. An unbiased method returns a mean that approach-
es the true value of a parameter as long as the number of
ensembles used to compute the mean is large. In addition to
using ensemble averages and standard deviations to assess the
bias, three ensembles of 1,000 at N = 10, 100, and 1,000 were
run for the one-box model only. Histograms of the MLEs
computed for each run in an ensemble were used to assess
the distribution of the estimates, and the ensemble average
was compared to the true q.

To evaluate the accuracy of the method, the RLF was com-
puted for each individual run within an ensemble. The log-
RLF was plotted for a range of q values, which included q
(the MLE) and the true q value, to graphically assess con-
vergence on the true value, with the peak of the log-RLF
curve (R(q) = 0) representing the MLE. This was done by
superimposing the 10% likelihood interval, given by (R(q) =
0.10), on the plots of the log-RLF versus q. The RLF pro-
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vided insight to the certainty of a single estimate calculated
by the method of maximum likelihood.

Estimation of the MLE for the one-box model utilized the
analytical solution to the likelihood function. The numerical
and analytical solutions to the likelihood functions for the
two-box models were both developed to calculate the MLE.
However, when it was verified that the numerical solution
produced the same results as the analytical, only the analytical
solution was used in order to maximize computational effi-
ciency. A grid-search method was used to find the maximum
of the likelihood function. This involved defining a range of
q values that bounded the true q value and computing the log-
likelihood using the analytical (or numerical) solution at each
of these discrete values. The MLE was then found to be the
discrete q that best maximized the likelihood function. As a
consequence of using a grid-search, however, the accuracy of
this method was limited to finding the discrete value of q that
fell closest to the true value, as opposed to the true value
itself. This was not an inherent problem with the method
since the mesh of the grid could easily be made finer to esti-
mate parameters of a more realistic model.

Results  and Discussion

One-Box Model
As the number of floats used in a simulation of the one-box
model increased, the MLE for q converged to the true value
(Figure 4). The relative error of the ensemble mean MLE,
using the N = 10 simulations, was approximately 56% with a
coefficient of variation (CV) of approximately 39%. By
increasing the number of floats from 10 to 50, the relative
error of the ensemble mean MLE decreased to 5% with a CV
of 13%. There was little change in the relative error between
the simulation that used 100 floats and the simulation that
used 10,000 floats. However, the CV for a 100 float run was
approximately 10% compared to 1% for the 10,000 float sim-
ulation. With a relative percent error of about 2% and a CV
of just over 3%, the 1,000 float simulation returned an MLE
sufficiently close to the true value an acceptable percentage of
the time. If the one-box model was a realistic representation
of the marginal sea, these results would help determine the
optimal number of floats needed to achieve a desired level of
accuracy and precision in the estimation.

Figure 5 shows how uncertainty in a single estimate can be
reduced by using a larger number of floats. The 10% likeli-
hood interval, given by the intersection points of the log-
RLF curve and the R(q) = 0.10 (In R(q) = -2.30) line, gave
the range of q values that were considered plausible esti-
mates of q. At N = 10 this interval was broad, and a wide
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range of q values were plausible estimates of the true value,
while at N = 10,000 the estimate became more accurate.

Simulations using a smaller number of floats seemed to have
a slightly positive bias to the MLE for q (Figure 6). One thou-
sand-member ensembles were run at at N = 10, 100 and
1,000 floats to see if there was a bias in the method or if the
apparent bias was simply due to random variability.
Histograms of these ensembles showed a positive bias for N
= 10 floats, where the distribution of the estimates was right-
skewed and the ensemble mean was noticeably greater than
the true value. This bias decreased for the larger float simula-
tions, where the spread of distribution narrowed and its
shape became more Gaussian. Despite the slight positive bias
to the histogram of the 10-float ensemble, only 54% of these
runs yielded a q that was greater than the true value, which
was not significant enough to indicate a true bias in the
method.

Two-Box Models
Type A Two-Box Model
Two flow parameters, qd and qs , were estimated in the type
A two-box model. Again ensemble averages were used to
assess the bias of the method. Based on the ensemble
means for qd and qs, the method did not show any strong
bias, and the true value was well approximated for increas-
ing float numbers (Figure 7). For both parameters, the
ensemble standard deviation decreased exponentially with
increasing numbers of floats (Figure 8), with the range of
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MLEs converging to the mean MLE, though not exactly to
the true value. This minor incongruity was a result of
the discretization of the range of qd and qs values used to
compute the MLEs. A finer-mesh grid would resolve this
problem.

As in the results for the one-box model, the plots of the
log-RLF versus a single parameter showed increased cer-
tainty in the parameter estimate with increasing float num-
bers (Figure 9). Both the 1-D plots and 2-D contour plots
also showed that the qs estimates were more constrained by
the data than the qd estimates, though this characteristic
diminished at simulations of 1,000 and 10,000 floats. The
lesser certainty of the qd estimates for smaller float numbers
was most likely a result of the absence of direct circulation
to the open ocean from this box (Figure 3), where recircu-
lation between B1 and B2 limited the likelihood that a float
would escape from the marginal sea.

Type B Two-Box Model
There were four parameters to estimate in the type B two-
box model, though for simplicity, the estimation was nar-
rowed to two parameters by setting the recirculating flows
in this model equal to each other. As a result, the parame-
ters estimated in the type B two-box model were qd and qc ,
where the MLE determined for qd represented the MLE for
qd , qs1, and qs2. The type B model represented the first
attempt to estimate both advective and diffusive flows con-
currently.
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Figure 9
From left to right within each frame: contour plot of the log-RLF (blue

curve) mapped onto a 2-D grid of qd (abscissa) and qs (ordinate) values;

1-D plot of the log-RLF versus qd; and 1-D plot of the log-RLF versus qs.

The 10% likelihood level is indicated in red.  Plots are the log-RLF results

from 10-member ensembles of the type A two-box model, for N = 10,

50, 100, 1,000 and 10,000 floats, for (A), (B), (C), (D), and (E), respec-

tively. The 10% likelihood interval for the contour plot in (E) is circled.
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Plots of the ensemble mean MLEs, and the ensemble stan-
dard deviations, for both qd and qc showed that the method
was unbiased for large float numbers (Figure 10). A 10-
member ensemble returned the approximate true value with
little variance for simulations using 1,000 and 10,000 floats.
Again, the MLEs converged to the ensemble mean, as
opposed to the true value. As with the type A model this
was a result of the discrete set of qd and qc values used to
find the maximum.

Plots of the ensemble standard deviations showed that, in
general, the precision of the MLEs for the advective flow
parameter qc was greater than the precision for the diffusive
flow parameter qd (Figure 11). While these plots seemed to
show similar results for the ensemble standard deviations,
it is important to note that the true value of qd was on the
order of 1012, in which case the standard deviation was of
the same magnitude as the parameter value for float num-
bers less than 1,000. In fact, for N = 10 the ensemble CV
for qd was more than 100%; whereas the ensemble CV at N
= 10 for qc was approximately 32%. This discrepancy was
not noted in the two-parameter estimation for the type A
model. In the type A model, however, the two flows were
of the same order of magnitude, since they were both dif-
fusive flows. In the type B model, it may be difficult to esti-
mate flows with equal precision when their magnitudes are
very different. This problem vanished, however, as N

became large.

One-dimensional plots of the log-RLF versus each individ-
ual parameter showed a reduction in the uncertainty of the
parameter estimate with increasing N (Figure 12). The 2-D
contour plots showed that the advective flow was better
constrained by the data than the diffusive flow for smaller
N, corroborating the results shown by the ensemble data
that indicate that at small N the diffusive flow was difficult
to constrain in the presence of the larger advective flow.

Two features are worth noting in the log-RLF plots for the
type B model (Figure 12). First, for small N the plot of the
log-RLF leveled off for small values of qd . This indicated
that a small diffusive flow was not significantly different
from a zero value in the presence of the larger advective
flow. In fact, for N = 10, a value of zero for qd was a plau-
sible estimate since this portion of the plot was positioned
above the 10% likelihood interval. The second interesting
feature can be seen in the 1-D log-RLF plots for qc . The
double maxima in the plot for N = 10 occurred symmetri-
cally on either side of qc = 0, where the negative value indi-
cated a flow in the opposite direction than depicted in
Figure 3. The negative local maximum, however, fell below
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the 10% likelihood interval, and was therefore an implausi-
ble estimate. Both of these features weakened with increas-
ing N, and indicated that for small N the method was bet-
ter at determining the magnitude, but not the direction, of
the flow.

Conclusion

This study derived a new approach for estimating circula-
tion in an ocean basin from Lagrangian data. It was shown
that the method of maximum likelihood can be implement-
ed successfully in the context of simple box models, and
means were identified by which this method could be gen-
eralized to more realistic models. The simple box model
approach to developing this method provided intuition and
understanding about how the method responds to different
flow configurations. It was found that the diffusivity was
difficult to estimate in the presence of a net advective flow
when N was small. With larger float deployments, though,
both the diffusivity and the advective flows can be reliably
estimated. In the limit that N became large, this method
produced consistent and unbiased results. This method
shows potential for becoming a useful tool for converting
Lagrangian position data into Eulerian velocity and diffu-
sivity fields for subsequent assimilation into Eulerian circu-
lation models.
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Figure 12
From left to right within each frame: contour plot of the log-RLF

(blue curve) mapped onto a 2-D grid of qd (abscissa) and qc (ordi-

nate) values; 1-D plot of the log-RLF versus qd; and 1-D plot of the

log-RLF versus qc.  The 10% likelihood level is indicated in red.

Plots are the log-RLF results from 10-member ensembles of the

type B two-box model, for N = 10, 50, 100, 1,000 and 10,000

floats, for (a), (b), (c), (d), and (e), respectively.  The 10% likelihood

interval for the contour plot in (e) is circled. The units of q are cubic

meters per year.



The principal advantage of this method is the ability to
deduce information about parameter uncertainties using the
relative likelihood function. Understanding the uncertainty
of the parameter estimate allows oceanographers to deter-
mine the optimal weights needed for blending observation
with model output when assimilating the observational data
into an ocean model.

A second benefit of this study is the potential for using n-
member ensembles to optimize Lagrangian drifter studies.
Pre-field testing using this technique would allow oceanog-
raphers to determine the optimum number of floats need-
ed to achieve a desired level of accuracy and precision in the
flow estimates, thereby minimizing the cost of sampling
and the potential for aliasing due to underestimation of the
number of floats necessary to characterize the circulation.

As the method is developed for more realistic n-box mod-
els, several issues of refinement will need to be addressed.
First, the grid search method for finding the MLE should be
replaced by a more sophisticated optimization procedure.
Other possible methods are already being considered and
will be tested in the future. Second, generalization to an n-
box model must be tested to be certain that multiparameter
estimations are indeed numerically feasible. It was assumed
that because in theory the method of maximum likelihood
extends readily to multiparameter estimation, this transition
would be straightforward though possibly computationally
expensive. This generalization will require an exclusively
numerical approach for integrating the differential equa-
tions that define the probability models. The numerical
methods have already been developed, though the probabil-
ity model has yet to be built for an n-box system. The final
step to fully developing this method is to test it using real
Lagrangian data.

Ultimately, this method offers an alternative procedure for
converting Lagrangian position data into Eulerian flow
fields; one that is reliable, accurate, and provides greater
resolution of the two types of fluid motion that describe
ocean circulation. Improved resolution of the observation-
al data ensures the development of higher quality and more
reliable ocean circulation models that will produce more
realistic results when incorporated into climate models for
studying global climate change.
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