
For Anshuman Chadha, this
research experience has defi-
nitely influenced his future.
After finishing his research
project and completing a
degree in Information &
Computer Science, he plans to
attend graduate school with
the hopes of working further
with speech and linguistics
technologies. In addition to the
proposal and grant writing
skills he has developed, this
project also gave him the
opportunity to improve his
technical writing skills. To sup-
plement to his academic work,
Anshuman interns at Raytheon
Systems as a software engineer.
In his spare time, he enjoys
reading Tom Clancy and James
Clavell novels. Anshuman is
also one of two UCI under-
graduates selected to present
his research at 2004 UC-Day in
Sacramento.

The manipulation of information in its digital form is one of com-
puter science’s fundamental gifts to all other sciences. Things get
interesting and fun when the data is related to what human beings
can do as in speech communication. It turns out that we, humans,
have a relatively low bit rate when communicating through speech.
Anshuman’s project confirmed the rate of 40 bits per second that
has been suggested before as the rate of verbal communication. We

all know that there’s a lot more to speech than the words, but this project focused
only on the words. Compared to the high bandwidth computers out there, we don’t
say much!

Key Te rms

� Huffman Tree

� Lexeme

� LPC Algorithm

� Speech Coding

A 40 Bits Per Second Lexeme-
based Speech-Coding Scheme

Anshuman Chadha
Information & Computer Science

Speech coding is digital representation of the speech sound. Traditional speech-
coding schemes handle acceptable quality speech at bit rates that exceed 2,400

bits per second (bps). This project is based on an extremely low bit-rate speech-cod-
ing scheme, on the order of 40 bps. In order to get such a low compression rate, all
recognized speech is coded at the lexeme (word level), with low-level elements such
as tone and frequency completely disregarded. The lexemes are coded using a prob-
ability-based compression mechanism. This coded data is then decoded and decom-
pressed using text-to-speech. Results from this experiment showed that while there
were errors introduced by the speech recognition engine, listeners were often able to
recover from such errors by inferring what was trying to be expressed. Results also
showed that errors made by the listeners in recognizing the synthesized samples were
highly dependent on the content of the samples, especially with regard to the famil-
iarity the listeners had with the topic. Applications of this method include speech
storage and communications over low-capacity channels.

1 5T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

A u t h o r

A b s t r a c t

F a c u l t y M e n t o r

Cristina Videira Lopes
School of Information & Computer Science

Introduct ion

Digital telephone and cellular technologies are possible
largely because of the use of speech coding in the trans-
mission of speech signals. Speech coding is a digital repre-
sentation of the speech sound that provides efficient stor-
age, transmission, recovery, and perceptually faithful recon-
struction of the original speech (Papamichalis, 1987). There
are two conflicting factors involved with speech coding:
quality of the speech signal versus size of the digital repre-
sentation. Due to the large amounts of data that needs to be
coded, a high bit rate is required for a more natural repre-
sentation of human speech. If memory or capacity of the
channel is of concern, then the bit rate can be lowered at
the cost of poorer quality of the reconstructed speech sig-
nal, due to the smaller amount of data that is coded.

The characteristics of speech signals, namely the frequen-
cies, allow compression algorithms to operate at 2,400 bits
per second (bps) with acceptable quality. The Mixed
Excitation Linear Prediction (MELP) coder described in the
work of Supple is the current government standard for
voice communications (1997). MELP is based on the tradi-
tional Linear Prediction Coding (LPC) model (Markel and
Gray, 1976), with added features for improved performance.
The generally accepted compromise between quality and
performance is 2,400 bps. Hence, modern speech coders
fall under two categories: those that code above 2,400 bps,
and those that code below 2,400 bps. Coders above 2,400
bps are used for applications where the emphasis is placed
on the quality of the speech. Coders below 2,400 bps
emphasize signal compression and are known as “low bit-
rate coders,” and those below 1,000 bps are known as “very
low bit-rate coders.” The method presented in this paper is
a speech-coding scheme that codes on the order of 40 bps,
and is thus categorized as an “extremely low bit-rate coder.”

Segment Voice Coder
Previous research has already been done in the area of low
bit-rate speech coding. Signal processing filters are often
used to simplify the speech waveform, reducing the amount
of data needed to code the speech signal. These filters
extract features from the speech samples, such as the pitch
and frequency. The coder described in the work of Lee and
Cox uses a database of speech segments (1999). When the
subject speaks, the speech is segmented as a set of unit ref-
erences to a database. At the receiving end, the synthesis of
the original speech involves recognizing which units from
the database were part of the original speech, concatenating
the units, factoring in the pitch period, and outputting the
speech. The outcome is a type of segment vocoder (or

“Voice Coder”), a coder that codes on the order of 3,000
bps with output that sounds similar to the original speech.
For this coder to function, text transcripts of the speech
must be available a priori. This is because text transcripts are
used to create the time alignment between the speech wave-
forms and the spoken text, in order to factor in the pitch
periods appropriately, and give the reconstructed speech its
naturalness.

The modified coder described in Lee and Cox uses a slight-
ly different approach for coding speech (2002). For this
coder, a database of speech blocks is used. Each block is
approximately 10 milliseconds in length, and the database is
based on the speech patterns of a particular speaker. This
approach does not require speech transcripts to be available
a priori because the speech blocks are already modeled on
the voice of the speaker. This approach results in a larger
database and a larger encoding. The bit rate of this coder
was found to be 580 bps while maintaining natural and
intelligible sounding speech.

Phonetic Vocoder
The use of a phonetic vocoder results in an even more
compact coding scheme. The system described in Tokuda et
al. recognizes the phonemes of speech, which are the small-
est units in a language that can cause a difference in mean-
ing (e.g. the “h” sound in “hill” versus the “m” sound in
mill) (1998). This system codes the phoneme index, the
duration of the state (e.g. phoneme duration, silence dura-
tion), and the pitch information about the phoneme, as
opposed to a segment coder, which uses a database of
speech blocks unique for each particular speaker.
Consequently, two speech coders are produced: one coding
at about 150 bps, and another coding at about 70 bps. The
150 bps coder was found to have the same quality as a 400
bps coder, while the 70 bps coder was found to have a
lower quality than the 400 bps coder, though the synthe-
sized speech remained intelligible.

Syllable Level
Another approach is to code at the syllable level. Hirata and
Nakagawa proposed a coder that utilizes speech recognition
to parse speech input and recognizes all syllables (the sys-
tem was built around the Japanese language, which is com-
posed of more than 100 unique syllables) (1989). Each syl-
lable is then coded, along with the duration, power and
pitch, with only 16 bits per syllable. Reconstruction of the
speech involves decoding the code and concatenating the
syllables. The coded features are applied to the reconstruct-
ed speech and are used to keep the syllables from sounding
disjointed. While this approach works well in theory, actual

16 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA 4 0 BB I T S PP E R SS E C O N D LL E X E M E - B A S E D SS P E E C H - CC O D I N G SS C H E M E

experimentation showed that the intelligibility of the phras-
es was less than 70%.

A commonality between these three systems, the segment
coder, voice coder, and syllable-level coder is that, within
the limitations of low bit-rate speech coding, the goal is to
reconstruct the original speech signal as closely as possible.
Ideally, the resulting speech signal sounds like the signal
produced by the person who speaks. For that, several real-
time features of the speech, such as pitch and speech dura-
tion along with the speech units, must be coded.

The speech-coding scheme in this study is similar to the one
proposed by Hirata and Nakagawa in that a speech recogni-
tion approach is also used to process the speech signal
(1989). However, unlike the other coding schemes, our
coder does not attempt to preserve or reconstruct the real-
time non-verbal information of the speech signals; it simply
targets the words. For that reason, this approach can be clas-
sified as lexeme coding (a meaningful word level unit of a
language). Further, since some words are used more com-
monly than others, entropy coding, specifically the
Huffman scheme, ultimately can be used to create the codes
(1952). Eventually, speech may be synthesized using the
voice features of the speakers and stored statically in the
decoder (rather than coded along with the messages). With
the lexeme coder, speech coding becomes a matter of
English text compression.

In the lexeme coder, the words of speech are coded, but not
real-time features, such as pitch, tone and duration. In many
situations, such non-verbal information of speech is irrele-
vant. For instance, most handheld devices also have limited
memory, and so an efficient data compression algorithm
that preserves the lexemes is critical – even more so than the
exact reproduction of the original speech signal. This is
because the goal of recording a memo is to store a piece of
data for future reference. The quality of the speech does not
matter as long as the data is transmitted correctly. This is
also true in places such as command and control centers
during military campaigns, where orders are issued live to
units in the field. Here, the overall purpose of communica-
tion is the transmission of orders – whether or not the
orders sound human-like at the receiving end does not mat-
ter. For recording memos and for transmitting orders to
military units, using a speech coder that codes and transmits
speech features, such as pitch and duration, would be waste-
ful, when transmitting just the lexemes would be sufficient.

With these types of applications in mind, the lexeme coder
was implemented and tested. The method, implementation,

and experimental results as well as the limitations of the
methods and how it can be improved were discussed.

Tools and Methods

Several tools are utilized for the lexeme coder, all of which
are commercial-grade. Figure 1
shows the three layers of the
system.

The Microsoft Speech
Software Development Kit
(SDK), which provides freely
distributed Text-to-Speech
(TTS) and Speech Recognition
(SR) engines, is used as the
backbone of the project
(Microsoft Speech, 2002). To
easily access the two engines,
an open-source Java system
called CloudGarden is also uti-
lized (CloudGarden Talking Java, 2002). CloudGarden is a
software package that implements the Java Speech
Application Programming Interface (API), allowing for
simple access to the lower software layer (Java Speech API
Programmer’s Guide, 1998).

A list of English words and their corresponding frequen-
cies of use served as another tool that was needed to con-
duct this research. These statistics were used to create the
coding of the words using the Huffman scheme. The
Edict Virtual Language Centre provided the 5,000 most
frequently used words in the English language and their
respective frequencies for this project, which were
acquired from the Brown Corpus Manual (2002). The cor-
pus contains 500 text samples of about 2,000 words,
resulting in a list of more than one million words. The cat-
egories of the text samples were diverse, ranging from pol-
itics to religion to excerpts from romance novels. These
text samples were analyzed to find the frequencies of
words that are most commonly utilized in American liter-
ature. The 5,000 words were ordered and listed in a small
file that was parsed by the lexeme coder. Table 1 shows the
first 10 lines from the word file.

Creation of the Huffman Tree
The frequency information is used to create an efficient
coding of the lexemes. Figure 2 shows an example of how
Huffman coding differs from “non-varying” or “fixed”
coding (Hamming, 54).

17T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA N S H U M A N CC H A D H A

Lexeme Coder

CloudGarden/
Java Speech API

Microsoft Speech SDK

Figure 1
Architecture layers of the

system

The fixed code representations of S1 through S4 each use
two bits (0s and 1s) to represent four unique values, while
the Huffman code representations range from one to three
bits. Although S3 and S4 of the Huffman code require three
bits instead of two, probability dictates that S1, which
requires only a single bit, will be coded most often.
Therefore, because S1 occurs 20% more often than S3 and
S4 combined, the resultant Huffman code becomes smaller
than the fixed length code.

The key data structure used in the lexeme coder is the bina-
ry tree, which consists of a data structure composed of
“tree nodes.” Each tree node can have zero, one, or two
“children.” The node at the highest level of the tree is called
the “root node.” Nodes with one or two child nodes are
known as “branch nodes,” and nodes with no children are
known as “leaf nodes.”

In this method, the first step in coding speech is to establish
the codes of the words. First, the word file (Table 1) is
parsed, and the words and their respective frequencies of
use are loaded into the system. Each word and its respective
frequency are loaded into a tree node object, and those
nodes are stored sequentially in a list. Since the words are
sorted in descending order according to their frequency
within the file, the ordering of the words is preserved in the
list. Once the system has parsed all the words, it builds the
binary Huffman tree, as the pseudo code excerpt shows.

1 while (there is more than one element in the list)

2 get the last and second to last nodes of the list

3 create a new branch node

4 make the last node the left child of the new node

5 make the second to last node the right child of the

new node

6 calculate the frequency of the new node

7 put the node back in its appropriate position in the list

In line two above the last two nodes (i.e. the two nodes
with the lowest frequencies) are pulled from the list. In line
three a new tree node object is created, and in line four and
five the two pulled nodes are associated with this new
node. The node with the lowest frequency is made the left
child of the new node, and the node with the second-to-
lowest frequency is made the right child of the new node.
The frequency calculated in line six is the sum of frequen-
cies of the two pulled nodes. In line seven a search is per-
formed on the list to find the appropriate position to put
the new node, so that the ordering of the nodes is pre-
served. Figure 3 illustrates this process.

After the leaf and branch nodes have been established,
binary codes must be assigned to each word.

1 loadFunction(theNode, currentCode)

2 if(theNode is a leaf node)

3 set the binary code of theNode to currentCode

4 else

5 if(the rightChild of theNode is not null)

6 add a “0” to the end of currentCode

7 call loadFunction(rightChild of theNode,

currentCode)

8 if(the leftChild of theNode is not null)

9 add a “1” to the end of the currentCode

10 call loadFunction(leftChild of theNode,

currentCode)

The system calls “loadFunction,” which is a recursive func-
tion that holds the root node and an empty string object as
its parameters. The “theNode” value is the current tree node
of the Huffman tree being considered, and “currentCode” is
the binary code that has been generated up to this point.
Line two checks if “theNode” is a leaf node. If not, then the
node’s binary code (and in turn the binary code of the word
the node is wrapped around) is set to “currentCode,” and the
function call ends there. If it is not, then the function checks
to see how many child nodes “theNode” has. If a right child
node exists, then a “0” is added to the binary code and
another recursive call to “loadFunction” is made with

18 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA 4 0 BB I T S PP E R SS E C O N D LL E X E M E - B A S E D SS P E E C H - CC O D I N G SS C H E M E

Word Order Word Frequency %

1 the 6.8872

2 of 3.5839

3 and 2.8401

4 to 2.5744

5 a 2.2996

6 in 2.1010

7 that 1.0428

8 is 0.9943

9 was 0.9661

10 he 0.9392

Table 1
First 10 entries of the word list.

Fixed code representation

Huffman code representation,

assuming the probabilities

of occurence as shown

S1 S2 S3 S4

 S1 S2 S3 S4

00 01 10 11

45% 30% 15% 10%

0 11 101 100

Figure 2
A comparison of Huffman and fixed code representations

“rightChild” and the
updated “currentCode” as
parameters. If a left child
node exists, then a “1” is
added to the binary code
and a recursive call to
loadFunction is made
with “leftChild” and the
updated “currentCode” as
parameters. Thus at every
branch node, the function
either branches right first
and then left, until it
reaches a leaf node.

Figure 4 shows an example of how the codes are generated.
In Figure 4, a branch left adds a “1” to the code, and a
branch right adds a “0” to the code. Note: since the value
“C” in the figure has the smallest binary representation, it
can be assumed that “C” has the lowest frequency value,
based on how Huffman trees are generated for the research
system. Table 2 shows a few words that are listed in the
word list, and their binary representations.

Coding
Once the Huffman tree has been generated and the binary
representation for each word is specified, coding a particu-
lar word is simply a matter of searching through the list of
words for the particular word, and returning the binary code
associated with that word.

Unfortunately, the lexeme word coding system can present
a problem when a word that is not within the list is encoun-
tered. To alleviate this problem, a custom coding scheme is
utilized for words that are not within the 5,000-word list.
For unlisted words, the number of characters of the word
is counted, and since all 26 letters of the English alphabet
can be coded with five bits, binary representation of each
character of the word, along with the binary value of the
number of characters of the word, becomes the coding for
this particular word. This scheme is shown in the next pseu-
do code excerpt.

1 if word is in the word list

2 return word binary code

3 else

4 create variable returnString

5 add unlisted word flag binary code to returnString

6 add binary representation of the number of

characters of the word to returnString

7 for each character of the word

8 add binary representation of the character to

returnString

9 return returnString

The “unlisted word flag” binary code added in line five is
“0000001;” seven bits that signify the block of binary code
as representing an unlisted word. A special leaf node is cre-
ated in the Huffman tree that can be reached with the path
involving six right branches and one left branch
(“0000001”). If this leaf node is reached, then the system
will know to decode the next block of code for the unlisted
word. In line six the binary representation of the number of
letters of the word is added to the “returnString” variable
(i.e. if the word were seven letters, “0110” would be added
at the end of “returnString”). In lines seven and eight, the
letters of the word are coded and concatenated one at a
time. Finally, in line nine the calculated binary representa-
tion for the particular word is returned. Figure 5 shows that

19T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA N S H U M A N CC H A D H A

Branch node, does not
contain a word value

Step 1: Two nodes with the lowest
frequency are pulled from the list.

p = 0.60

p = 0.40

p = 0.25

p = 0.60

p = 0.35

p = 0.40 p = 0.35 p = 0.25List of nodes
p = frequency

Could be leaf or branch node

Step 2: New node with p = frequencies
of the two pulled nodes is created

Step 3: New node is reinserted into the list in the
appropriate position to maintain descending order.

p = 0.25 p = 0.35

Figure 3
One process in the creation of the Huffman tree based on the pseu-

do code in Table 3

1 0
Root

C

A B

1 0

A: 01
B: 00
C: 1

Figure 4
Binary code assignment

Word Code Frequency

The 0010 6.8%

Was 111111 0.96%

Dreamed 111101011110000 0.0019%

Mexico 111101011110100 0.0019%

Table 2
Listed words and their binary representations

46 bits are required to represent the seven-letter word
“prosody.”

Decoding
Decoding the binary code is a relatively simple process, with
the exception of decoding the unlisted words. To decode
words that are in the 5,000-word list, the system simply
starts at the root node, branches to the left or right child
node of the root (based on the value of the first bit of the
code), and repeats the process for the next node and so
forth. To decode the unlisted words, the three parts of the
binary code must be recognized: the unlisted word flag, the
number of characters, and the binary code for each of the
characters themselves. The next code excerpt demonstrates
this process.

1 create new String returnString

2 variable current:= root node

3 for each bit of binary input

4 if bit is 1

5 current:= left child of current

6 if current is a leaf node

7 if leaf node is unlisted word node

8 read in 4 bits

9 calculate the number of letters

10 for each letter

11 read in 5 bits

12 calculate letter

13 add letter to returnString

14 else

15 add binary value of leaf node to

returnString

16 current:= root node

17 else if bit is 0

18 current:= right child of current

19 <repeat lines 6 through 17>

20 return returnString

Line one demonstrates that the “returnString” variable
holds the data that will be returned after all the bits have
been decoded. “Current” is a reference to the Huffman tree
node that is currently under consideration. The reference
starts at the root of the tree, and each bit changes the ref-
erence to either the left or right child of that particular
node. Line three begins the “for” loop that iterates for each
bit of the input. If the current bit is “0” (line 17) then the
code jumps to line 18. Otherwise it continues to line five. At
line five the current bit is “1,” indicating a branch to the left.
Thus, the reference of “current” changes to the left child of
“current.” If the node is a leaf node, and if the node is a
listed word, then the binary representation of the word will
simply be added to “returnString,” and the program will
continue. However, if it is the unlisted word flag, then the
next batch of binary code is decoded. The first four bits are
read to determine the number of characters that compose
the word. The loop in line 10 will iterate for the number of
times equivalent to the number of characters calculated in
the previous line. For each iteration, five bits are read in, the
character represented by the binary code is determined, and
that character is added to the “returnString” variable. At the
end the “current” reference is shifted back to the root node
of the Huffman tree, so that a new word can be decoded.
The loop in lines 6 through 17 is repeated after line 19 with
a different “current” reference. At the end of the function,
the “returnString” value is returned, which is composed of
all the words that were decoded.

System Test ing

Speech Samples
To test the capabilities of the system, the diverse test samples
were used to better estimate the efficiency of the algorithm.
Table 3 shows the six samples that were used for testing pur-
poses, and provides a brief description of their content.

Recognition Error Testing Procedure
A set of rules was developed to determine
the number of errors made by the system in
recognizing spoken speech. The number of
errors is determined by comparing the origi-
nal text samples to the transcripts of the rec-
ognized speech. The two sources are com-
pared word-by-word for any discrepancies. If
a word in the text sample is not appropriate-
ly recognized by the system, an error is
flagged. This includes the following cases:
incorrect word or words in place of the cor-
rect word, a missing word, or entirely extra-
neous words. Note that these cases are not

20 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA 4 0 BB I T S PP E R SS E C O N D LL E X E M E - B A S E D SS P E E C H - CC O D I N G SS C H E M E

Number of letters: 7 letters
19th letter: S

15th letter: O

25th letter: Y

Word: Prosody

Marking code
for unlisted word

16th letter: P

18th letter: R
4th letter: D

0000001 0110 10000 10010 01111 10011 01111 00100 11001

15th letter: O

Figure 5
Binary representation of an unlisted word

cumulative: for example if
the words “I do” appear in
the recognized transcript,
instead of being recognized
as “Idol,” a single error is
counted. Once the number
of errors is counted, the
percentage error is tabulat-
ed by dividing the number
of errors by the total num-
ber of words of the partic-
ular text sample.

Human Testing
Procedure
The last phase of the
research is human testing,
where human recognition
errors are compared to the
speech engine recognition
errors. Five test subjects sat
in front of a computer and
listened to the synthesized
speech samples. The sam-
ples were played one sen-
tence at a time through the Microsoft Text-To-Speech syn-
thesizer. The subjects could ask for the current sentence to
be replayed, but they could not go back to a previous sen-
tence, nor could they pause in the middle of a sentence. The
test subjects were not made aware of the content of the
samples, but they were made aware of possible errors that
may be present within the text samples. The test subjects
were advised not only to type what they heard, but also to
make an attempt to infer information based on the context
of the sample and to try correct the errors. For example, if
the test subject was able to determine the context of a par-
ticular passage to be mountain ranges, and he or she heard
the phrase “the apple ate ton mountains are huge,” perhaps
he or she may be able to infer that “apple ate ton” really is
supposed to be “appalachian.” Upon completion, perceptu-
al errors were counted by comparing the transcribed texts to
the original text samples, not the synthesized transcripts the
subjects listened to (i.e. the words that were recognized by
the Speech Recognition engine). The same rules for count-
ing errors as mentioned above were used. This study was
approved by the Institutional Review Board (IRB) of UCI,
under protocol #2003-2947.

Exper imental F indings and Results

There were two important categories of data that were col-

lected when testing the lexeme coder. The first is the data
rate of the coding scheme, measured in bps. The second is
the error rate: the number of recognition errors made by
the speech engine, as well as the number of recognition
errors made by human listeners. The data rate of the cod-
ing scheme is measured as follows: When spoken, the text
samples are of a certain length of time and the coding of
each sample is saved to a binary file. Next, the bit rate was
determined by dividing the size of the bit file by the num-
ber of seconds of spoken text. Table 4 shows all the data
necessary to determine the bit rate.

As shown in Table 4 the bit rate varies between 40 and 50
for the six samples. As expected, the samples with a higher
percentage of unlisted words tend to have a higher bit rate
since the unlisted words require the custom-built codes (i.e.
sample four with only 67 words has the same bit rate as
sample six with 109 words). Nonetheless, the variance is not
so high as to suggest that a new coding scheme is needed.
Because the synthesized samples were continuous, with
breaks only for punctuation, and the speech samples were
slowed to a more natural rate of speech, the bit rate would
be even lower, on the order of 30 bps or so.

Table 4 also provides a comparison against the GZip tool, as
a way of measuring the efficiency of our lexeme coder. GZip

21T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA N S H U M A N CC H A D H A

Sample Number of
Words Content Description

1 114
Description of how OpenGL (graphics programming library) models light and its

different components (ambient, diffuse, and specular light components).

2 89 Description of how OpenGL (graphics programming library) handles perspective
project transformation so as to model depth in a 2-D environment of a monitor.

3 96 Explanation of the virtual memory systems that appear in contemporary
computers, as well as the issues involved with using it.

4 67 Definition of so-called “legacy software,” and the challenge it presents to
computer scientists and professional developers alike.

5 88 Passage from a children’s story about the difference between astronauts and
“aquanauts” (Schaffert, 1983).

6 109
Passage from a children’s story about the Norse myth of Thor and the Giants

(Pyk, 1983).

Table 3
Diverse text samples used to better estimate how efficient the algorithm is

Sample #

Words

% Words

Unlisted

Length of

Speech

(seconds)

Gzip

Compression

File Size (bytes)

Lexeme Coder

Compression

File Size (bytes)

Bit Rate of

Coder (bps)

1 114 15% 42 371 245 47

2 89 17% 35 343 220 50

3 96 21% 37 366 195 42

4 67 24% 29 296 173 48

5 88 10% 28 308 148 42

6 109 13% 29 260 173 48

#

Table 4
Bit-rate data

(or GNUZip) is based on the loss-less coder presented in Ziv
and Lempel (1978). This GZip functions at the character
level, whereas this coder works at the word level, which
achieves 30% to 50% more compression than GZip.

Table 5 demonstrates that the percentage of words that are
unlisted does not appear to have any bearing on error per-
centage. For example, samples three and four have the high-
est percentage of unlisted words, and yet they have some of
the lowest numbers of recognition and perceptual errors. By
comparing the recognition and perceptual errors, there
appears to be a linear relationship: as one increases, so does
the other. But variation in error percentage can only be
explained by looking at the Difficulty Rating as well. The
Difficulty Rating is a subjective measure established for each
sample, based on the complexity of the sentence structure,
as well as the complexity of the content. The content com-
plexity takes into account the fact that all of the subjects
were, in one way or another, part of the Computer Science
Department (i.e. students, professors). The difficulty level of
the samples were based on how specialized the information
was. Sample six is a passage from a children’s book about
Norse legend, with little or no word complexity. Sample four
discusses the problem of legacy software with terminology
the majority of people in the computer industry should be
able to understand. Sample three discusses virtual memory,
another commonly known concept, though with slightly
more complex terminology. Samples one and two discuss
algorithms used in computer graphics, specifically in the
OpenGL library (information that is familiar to most people
in the graphics industry). Finally, sample five is another pas-
sage from the children’s book, that discusses the difference
between astronauts and aquanauts. Although the sentence
structure is quite simple, this sample was given the highest
difficulty rating because the word “aquanaut” is not a word
that the Microsoft Speech Engine can recognize. Therefore,
it would be hard for the human subjects to understand what
the sample is about if one of the key terms never transferred
accurately. This sample was the only sample where the
Difficulty Rating was based on the recognized speech, not
the original passage.

When the system was first devel-
oped, it was expected that the lis-
teners would get at least as many
perceptual errors as recognition
errors, if not more. However, the
results show that in four of the six
samples the listeners actually tran-
scribed fewer errors than they
heard. This observation can be

attributed to the listeners’ ability to detect many of the
recognition errors, and infer what was supposed to be rec-
ognized. This can be seen by looking at sample two, where
the subjects were able to infer more than a third of the
technical jargon that was missed by the recognizer.

In contrast the subjects were able to correct fewer errors in
samples five and six, which presented topics with which
testing subjects possessed little familiarity. These results
imply that it is feasible to code speech at extremely low bit
rates by doing a word-level analysis of the speech signals.
Furthermore, the results demonstrate that the more under-
standing the listeners have with the context of the spoken
selection, the fewer number of perceived errors will occur,
and a larger number of recognition errors will be caught
and corrected.

One limitation with the lexeme coder is the way that the
speech was played back through a synthesized voice. This
was unavoidable since only the words from the speech were
coded. However, the lack of extra speech features, such as
tone or pitch, make the speech completely unnatural and
most likely contributes to the number of perceived errors.

Conclusion

The results of this research show that it is possible to code
speech at extremely low bit rates using simple tools for the
process. We were able to achieve between 80% and 96%
recognition accuracy from the speech engine itself, and a
87% and 95% perceptual recognition accuracy. It is possible
that the better the speech recognition engine is, the fewer
the perceptual errors. Regardless, the lexeme speech coder
can be immediately put into use for purposes such as memo
recording and retrieving, where the speaker and listener are
the same person and share the context of the messages.
This system can also be used for military applications where
relatively small vocabularies are used, and the ability to
transmit orders as quickly as possible is imperative.
However, a drawback with the current lexeme coder is the
unnaturalness of the synthesized voice. We believe that the
coding of pauses and stresses, and the use of speech fea-

22 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA 4 0 BB I T S PP E R SS E C O N D LL E X E M E - B A S E D SS P E E C H - CC O D I N G SS C H E M E

Table 5
Error data for both the speech engine and the human test subjects

Sample # # Words
% Words

Unlisted

% Recognition

Errors

% Perceptual

Errors

Difficulty

Rating

1 114 15% 11% 11% 4

2 89 17% 17% 11% 5

3 96 21% 5% 6% 3

4 67 24% 7% 6% 2

5 88 10% 17% 13% 6

6 109 13% 7% 5% 1

tures such as tone or pitch that are currently ignored, will
greatly increase the quality of the synthesized speech while
preserving the data rate in the order of 40 bps. That work
is currently under investigation.

Acknowledgements

I would like to thank Dr. Cristina Lopes for giving me the
inspiration for this project, and for her continual support
through the design, development and documentation of the
research. I also want to thank the participants who agreed
to take part in the human testing. This research project was
supported by the Summer Undergraduate Research
Program and the Undergraduate Research Opportunities
Program at UCI.

Works Ci ted

Brown Corpus Manual. Ed. Anne Lindebjerg. 11 Sept. 1997.

Brown University. 20 Dec. 2002. www.hit.uib.no/icame/

brown/bcm.html.

CloudGarden Speaking Java. Ed. Jonathan Kinnersley. Ver 1.6.2.

08 Mar. 2001. CloudGarden. 10 Dec. 2002. www.cloudgar-

den.com.

Edict Virtual Language Centre. Word Frequency Text Profiler.

Edict. 15 Jan. 2003. www.edict.com.hk/textanalyser.

Furui, Sadaoki. Digital Speech Processing, Synthesis, and

Recognition. 2nd ed. New York: Marcel, 2001.

Hamming, Richard W. Coding and Information Theory. New

Jersey: Prentice, 1980.

Hirata, Yoshimitsu and Seiich Nakagawa. “A 100bit/s Speech

Coding using a Speech Recognition Technique.”

EUROSPEECH-89 1989: 290-293.

Huffman, David A. “A Method for the Construction of Minimum

Redundancy Codes.” IRE Proceedings 1952: 1098-1101.

Java Speech API Programmer’s Guide. Vers. 1.0. 26 Oct. 1998.

Sun Microsystems. 06 Jan. 2003. http://java.sun.com/prod-

u c t s / j ava - m e d i a / s p e e ch / f o r D e ve l o p e r s / j s a p i -

guide/index.html.

Lee, Ki-Seung and Richard V. Cox. “TTS Based Very Low Bit

Rate Speech Coder.” ICASSP-99 1999: 181-184.

---. “A Segmental Speech Coder Based on a Concatenative TTS.”

Speech Communication 38 (2002): 89-100.

Markel, J. D. and A.H. Gray Jr. Linear Prediction of Speech.

Berlin: Springer-Verlag, 1976.

Microsoft Speech. 10 Sept. 2003. Microsoft Corporation. 26 Dec.

2002. http://www.microsoft.com/speech/

Papamichalis, Panos E. Practical Approaches To Speech Coding.

New Jersey: Prentice, 1987.

Pyk, Ann. “The Hammer of Thunder.” Secrets and Surprises.

New York: Macmillian, 1983. 106-115.

Supple, Lynn M., R. Cohn, J. Collura, and A. McCree. “MELP:

The New Federal Standard at 2,400 bps.” IEEE International

Conference on Acoustics, Speech and Signal Processing. 21

Apr. 1997. Munich, Germany. Volume 2, 1591-1594.

Tokuda, Keiichi, Takashi Masuko, Jun Hiroi, Takao Kobayashi,

and Tadashi Kitamura. “A Very Low Bit Rate Speech Coder

Using HMM-Based Speech Recognition/Synthesis

Techniques.” ICASSP-98 1998: 609-612.

Ziv, Jacob and Abraham Lempel. “Compression of Individual

Sequences Via Variable-Rate Coding.” IEE Transactions on

Information Theory 24.5 (1978): 530-536.

23T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA N S H U M A N CC H A D H A

24 T h e U C I U n d e r g r a d u a t e R e s e a r c h J o u r n a l

AA 4 0 BB I T S PP E R SS E C O N D LL E X E M E - B A S E D SS P E E C H - CC O D I N G SS C H E M E

