
An avid fan and player of  soc-
cer, Mario Iobbi believes that
life should be stimulating to
both the mind and body.
“Most every Friday you’ll find
me playing indoor soccer at the
Rec Center.”  When not partic-
ipating in the physically active
side of  life, Mario works
toward a career in the field of
b iomed ical engineering.
According to Mario, the driv-
ing force behind his work is
“the final product, which is by
far the most rewarding part of
research.  There is a genuine
satisfaction to be attained from
having a tangible representa-
tion of  all the hard work.”

Participating in faculty-mentored undergraduate research is a great
way to exercise your creativity and invent a new device, technique,
or idea.  For example, Mario’s paper provides support for the new
idea that movement deficits after stroke can be modeled by damag-
ing an experimentally identified neural code.  This idea is important
because it provides insight into why it may be difficult to   move the
arm after stroke, and thus what neuroregeneration or neuroengi-

neering techniques might do to restore dexterity.   My advice is to follow Mario’s
example: develop useful skills by working hard in your classes, find an area that
excites you, hook-up with a professor, and exercise your creativity through under-
graduate research.
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M otor areas of  the cortex have been hypothesized to control arm movement
using population vector coding.  In this scheme, each neuron’s activity is math-

ematically represented as a movement direction vector.  By taking the vector sum
over a large distribution of  cells, a population vector is generated which has been
found to point in the hand’s movement direction.  We attempt to explain the reach-
ing impairments stroke victims commonly experience by adapting this population
vector model to include simulated cell death as well as an inherent firing rate vari-
ability.  Assuming strokes destroy neurons without preference, cell death is modeled
by randomly eliminating vectors.  The resulting vector sum begins to skew away from
the desired movement direction.  Comparisons to data from stroke subjects per-
forming center-out reaching tasks reveal similar trends in initial movement direction
error as a function of  stroke severity.  Furthermore, the simulation suggests a quan-
titative relationship between a common arm assessment scale used in clinical evalua-
tions and the fraction of  neural loss.
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Introduction 

This year more than 500,000 Americans will suffer a stroke,
and approximately 40 percent of  the survivors will be left
with chronic movement deficits (Parker et al., 1986;
Nakayama et al., 1994; Gray et al., 1990).  Although
progress has been made in describing kinematic and dynam-
ic features of  stroke-impaired movement, little is known
about the mechanisms by which these features arise.  The
purpose of  this study was to test whether a population vec-
tor model of  cortically controlled hand movement, dam-
aged to simulate the consequences of  stroke, can account
for a common feature of  stroke-impaired reaching:
increased trajectory variability. 

Population vector models are based on the observation that
the firing rates of motor cortical cells vary with respect to
the hand’s movement direction during center-out reaching
tasks (Georgopulos et al., 1998).  Each cell has a highest
mean firing rate corresponding to one preferred movement
direction, which is broadly tuned across a range of  direc-
tions.  A neuron can be mathematically modeled as a vector
pointing in the neuron’s preferred direction.  To form a
population vector for a given movement, each cell’s vector
is scaled by its mean firing rate, and a linear sum is taken
across all scaled vectors.  As was shown first for constrained
2-D reaches and later for free reaching in 3-D space, the
population vector points in the same direction as the hand’s
movement direction (Georgopulos et al., 1998; Scwartz et
al., 1999).  Such population vector coding has been found
for the primary motor cortex, premotor cortex, Area V of
the parietal cortex, and the cerebellum.

Stroke can cause widespread neuron destruction in each of
these areas.  Perhaps the most visible result of  this destruc-
tion is weakness (hemiparesis).  However, detailed kinemat-

ic analysis of  reaching movements following stroke has also
shown that directional control of  reaching movements is
commonly affected (Roby-Brami et al., 1997; Beer et al.,
2000; Levin, 1996).  In particular, the ability to steer the arm
in the desired initial movement direction is impaired, and
the directional variability associated with multiple reaches is
increased (Takahashi and Reinkensmeyer, 2001).  Recently,
the firing rate variability of  individual neurons was analyzed
as a function of  their mean firing rate.  A power function
was found to successfully model this variability for multiple
cortical areas.  We hypothesized that neural noise, incorpo-
rated into a population vector model modified to reflect
widespread neural destruction, might account for the
increased directional variability in reaching following stroke.
To test this hypothesis, we developed a population vector
model of  reaching control that incorporated previously
measured levels of  neural noise.  The model was then used
to fit experimentally observed directional reaching variabili-
ty in stroke subjects.  The model adequately captures the
dependence of  directional variability on stroke severity and
predicts key features of  that dependence. 

Methods

Computer Simulation
By recording individual action potentials from neurons in
the motor cortex of  rhesus monkeys, Georgopulos first
described the phenomenon he termed “directional tuning.”
During center-out reaching tasks, he observed that the fir-
ing rate of  each neuron varied with respect to the hand’s
movement direction (Georgopulos et al., 1982).  In particu-
lar, each cell had a highest mean firing rate corresponding to
one preferred movement direction.  For movement direc-
tions other than in the preferred direction, the cell’s mean
firing rate was found to decrease as given by Equation 1: 

where b and k are fitting coefficients, R represents the neu-
ron’s mean firing rate, and θp is the angle between the
hand’s actual movement direction and the preferred move-
ment direction.  Georgopulos et al. modeled the neurons
mathematically as vectors pointing in their preferred direc-
tions.  The magnitude of  the vectors was hypothesized to
encode for the neurons’ mean firing rates.  After recording
an adequate distribution of  cells, these vectors can be
summed together to form a population vector that points in
the actual direction of  hand movement.  Thus Georgopulos
et al. identified a region of  the motor cortex associated with
directional control of  reaching.
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R = b + k cosθp

Figure 1
Reference frame for neuron modeling. Note: only population vec-
tors are labeled by upper case Θ and Φ.

(1)



In accordance with the population vector model, neurons of
the motor cortex were modeled using several hundred-unit
vectors pointing uniformly outward from a single point, as
shown in Figure 2A.  A healthy virtual cortex contained 322
unit vectors, a number chosen arbitrarily.  Strokes were sim-
ulated by randomly eliminating a given percentage of  these
322 unit vectors.  Figures 2B and C show the virtual cortex
with 50% and 75% of  the unit vectors removed. 

Strokes are localized events affecting particular areas in the
brain.  However, there is no current evidence supporting
any topographical mapping of  neurons according to their
preferred movement directions.  Therefore, the simulation
assumed that neurons are not arranged according to pre-
ferred movement directions and cell death was approximat-
ed randomly.  Using a random number generator ensured
that no two strokes would be identical.  Hence the surviv-
ing unit vectors described a unique virtual cortex corre-
sponding to one particular simulated stroke subject.

In order for a simulated subject
to reach, the virtual cortex was
supplied with a desired move-
ment direction, another unit vec-
tor.  As described in Equation 1,
a neuron’s mean firing rate is a
function of  the angle between its
preferred movement vector (P)
and the desired movement vec-
tor (D).  Equation 2 shows that
the dot product of  two unit vec-
tors is equal to the cosine of  the
angle between them (θP).  

After dotting a vector from the virtual cortex against the
desired vector to obtain θP,  Equation 1 can be used to yield
the mean firing rate (R) of  that neuron.  This mean firing
rate is then set equal to the vector’s magnitude.   Figure 3
shows how a vector’s magnitude varies as a function of  θP. 

In vivo, neurons have a high degree of  variability in their
mean firing rate, as depicted by the error bars in Figure 3.
The equation for the standard deviation of  the variability is
given in Equation 3 (Takahashi and Reinkensmeyer, 2001):

where δR is the standard deviation in the mean firing rate.
Once each surviving vector is dotted against the desired
vector and given a new vector magnitude (R), they are
summed together to form the population vector
(Appendix).  For a healthy virtual cortex, the population
vector points in the same direction as the desired vector,
(Figure 4A).  However, simulated stroke subjects will expe-
rience an offset in their population vector with respect to
the desired vector (Figure 4B).

The simulation also accounts for the standard deviation in
the mean firing rate, Equation 3.  Variability in the neurons’
mean firing rates will inevitably create small errors in the
population vector.  Assuming the standard deviation in each
neuron is independent from that of  other neurons, the stan-
dard deviation can be calculated in the population vector
direction using Equation 4. 
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Figure 2
Vector representation of motor cortex. (A) Unimpaired virtual cortex. (B) 50% Impaired virtual cor-
tex. (C) 75% Impaired virtual cortex.

Figure 3
Mean firing rate as a function of the angle between the desired
and preferred vectors.

(4)

(2)

δR = 1.2165 R
0.5866 (3)



This general equation for independent error was used to
find δΘ, the standard deviation of  Θ in the population vec-
tor (exact equation given in Appendix).  Figure 5 shows the
probability of being a distance ∆ away from Θ.  The final
step of  the simulation was to incorporate this normal prob-
ability distribution described by δΘ to create a random off-
set in the population vector.  To evaluate the model, predic-
tions for movement direction errors were compared with
data from two experiments with stroke subjects.

Single Target Experiment 
Nine chronic hemiparetic subjects, ranging in age from 34
to 76, participated in the study approved by the Institutional
Review Board (IRB) of  the University of  California, Irvine,
under protocol #99-2326 (Takahashi and
Reinkensmeyer, 2001).  The subjects’ hands were attached
to a lightweight robotic arm (PHANToM 3.0, SensAble
Technologies, Inc) through a customized orthopedic splint.
The robot was used to measure the hand’s position in 3-D

space at a sample rate of  200 Hz.  Subjects were seated, and
a harness was employed to restrain any torso movements.
Before and between reaches, subjects were directed to rest
their hands on their laps.   Upon instruction, the subject
raised his/her hand to a physical start target several inches
above his/her lap.  Then a sound signaled him/her to reach
out to a physical finish target positioned directly in front
(ventrally) of  the subject.  The finish target was aligned with
the reaching shoulder, and just inside the boundary of  the
reaching workspace.  If  the subject was unable to attain the
finish target within six seconds, he/she was directed back to
his lap.  Subjects were given a one second rest in the lap
position.  After each movement, a computer provided feed-
back on the reach time.  A desired reach time was deter-
mined by taking the mean time of  the first ten reaches and
used to establish uniformity.  Periodic breaks were given to
avoid fatigue.  Subjects were selected for their ability to
attain the start target and consistently move closer to the
finish target.

Multiple Target Experiment
Twenty subjects, 16 with hemiparetic stroke, volunteered
for the study (Kamper et al.).  Subjects ranged in age from
30 to 85 years, with arm impairment levels ranging from
mild to severe.  The subjects were asked to perform 150
reaching movements, 75 with each arm.  Each reach was
directed at a target chosen at random from a set of  75 even-
ly spaced along 5 latitudinal rows and 15 longitudinal
columns separated by 12 degrees in both directions.
Subjects were positioned such that their sternoclavicular
notches were aligned with the middle of  the target area.
The subject’s trunk was restrained with a Four Point
Harness (Dynaform, Adaptive Engineering Lab, Inc), and
their wrists were splinted to prevent wrist flexion.  From an
initial posture with the hand on the lap and palm resting
against the body, subjects were instructed to reach at a com-

fortable pace to a point as
close as possible to the tar-
get without displacing their
trunk, maintain that posi-
tion for one second, and
return to the starting posi-
tion.  Again subjects
were a l lo t ted per iod ic
b reaks  to min im ize
fatigue.  A Flock of Birds
s enso r (Ascens ion
Technology Corporation)
was attached to the hand
to measure its position and
orientation.  Hand config-

24 T h e U C I  U n d e r g r a d u a t e  R e s e a r c h  J o u r n a l  

S I M U L A T I N G S T R O K E - I M P A I R E D RE A C H I N G US I N G A PO P U L A T I O N VE C T O R MO D E L O F CO R T I C A L CO N T R O L

Figure 4
Active virtual cortex. Lines symbolize individual neurons. The pur-
ple arrow represents the population vector, while the red arrow
represents the desired vector. (A) Unimpaired.  (B) Impaired. 

Figure 5
Probability plots of the population vector being an offset ∆ away from Θ, set at zero degrees. The dashed
lines represent ± δΘ. (A) Typical values for unimpaired reaching.  (B) Typical values for 50% impaired
reaching.



uration data was gathered at a sampling rate of  100 hz.  The
large number of  columns compared to rows made analysis
of  the initial Θ movement direction more statistically use-
ful.  Correspondingly, all data and analysis was limited to the
study of  this one angle.  (Note: Θ refers to population vec-
tors or hand movement direction.  Lower case θ refers to
individual neuron directions.)

Model and Data Analysis
For both the experiments and simulations, the positive x-
axis was defined as pointing directly outward in front of  the
seated subject (Figure 1).  Movement angles sweeping
toward the subject’s left were declared positive and right
movement angles were negative.  For both clinical trials, ini-
tial movement directions were obtained from the hand tra-
jectory data by using a 5 cm cutoff.  The initial movement
direction was the direction of  the vector described by the
start position and the point along the hand trajectory a dis-
tance 5 cm away from the start position.  Data from the
impaired arm were referenced against data from the unim-
paired arm.  Using the symmetry of  the experimental setup
about the xz plane, data from the unimpaired arm served as
the desired direction for the impaired arm by inverting the
sign of  the initial movement direction.

In the computer simulation, virtual subjects were designed
to follow the same protocol as their actual counterparts.  If
stroke subjects reached twenty times to a single target, vir-
tual subjects also executed twenty reaches.  The perfor-
mance of  the virtual subjects was assessed by the deviation
between their desired movement direction and the direction
of  their population vector.  Similarly, the performance of
stroke subjects was assessed by the deviation between their
desired direction and the initial movement direction of  their
impaired arm.

Prior to the trials, experienced therapists diagnosed the
stroke subjects with a Chedoke-McMaster Stroke Arm
Assessment score to rate their level of  impairment.  These
scores serve as an evaluation tool that has been shown to
have high inter- and intra-rater repeatability, as well as
strong correlation with the Fugl-Meyer score (Kamper et
al.; Lee et al., 1998; Gowland et al., 1995).  Low Chedoke
scores such as 2 or 3 indicate severe arm impairment while
a score of  7 would indicate an unimpaired subject.  A simi-
lar diagnostic scale, called stroke severity, was developed for
the virtual stroke subjects, in which the scores were
obtained by subtracting their damage fraction from unity.

A single measurement was developed to yield a numerical
value by which to measure the net amount of  initial move-

ment direction error each subject demonstrated.   This mea-
surement was the root mean squared error (RMS) and was
used to evaluate data from both clinical trials.  Subjects with
a large amount of  deviation between their desired directions
and initial movement directions received a larger RMS value
than those with small deviations.  For the single target
stroke data, the desired direction was taken from the aver-
age over a subject’s twenty unimpaired arm reaches.
Meanwhile, data from the multiple target task were analyzed
using a single reach to the corresponding target as the
desired direction.  The same RMS measurements were also
made for virtual subjects.

Results

Single Target Data
Figure 6 shows some typical subjects’ histograms for twen-
ty reaches to a single target.  The left column displays data
from stroke subjects and the right column contains data
from virtual subjects.  All subjects are organized top to bot-
tom as least impaired to most severely impaired.  The his-
tograms’ horizontal axes represent the deviation angle
between a reach by a subject’s impaired arm and the mean
desired direction as measured from their unimpaired arm.

Unimpaired subjects exhibited no significant mean devia-
tion from the mean desired direction.  Furthermore, their
reaches showed only some small variation about the mean
desired direction.  In contrast, the impaired subjects exhib-
ited a significant mean deviation from the mean desired
direction.  Additionally, their reaches also exhibit increased
variability as compared to unimpaired subjects.  The same
trends were present in the stroke subjects as well as the vir-
tual subjects.

Multiple Target Data
Figure 7 shows typical plots of  subject data for the multiple
target-reaching task. Each point on the plot is defined by
two reaches.  The initial movement direction from a sub-
ject’s unimpaired arm to a particular target is the desired
direction.  The initial movement direction of  the impaired
arm to the corresponding target defines the impaired direc-
tion.  Data points for unimpaired subjects lie roughly along
the diagonal line because there was little deviation between
the initial movement direction of  one arm compared with
the other arm.  However, subjects with increasing impair-
ment display a pronounced deviation from the diagonal.
This trend is indicative of  the initial movement direction
errors commonly associated with patients after strokes.  A
similar characteristic deviation from the diagonal was
shown by the reaching data of  the virtual subjects.
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RMS Data
All the results are shown in Figures 8 and 9.  In general,
stroke subjects diagnosed as having one particular Chedoke
score did not have a single RMS value, but rather exhibited
a range of  RMS values.  For example, the stroke subjects
diagnosed as Chedoke 3 during the single target trial ranged
in RMS values from 17 to 38.  Only in the case of  unim-
paired subjects does the RMS range converge close to a sin-
gle point.  In fact, the RMS range appeared to be related to
the level of  stroke impairment.  Figure 9A shows how
stroke subjects with higher levels of  impairments demon-
strated a much wider range of  RMS values than unimpaired
subjects.  This Chedoke-dependent spreading also appeared
in the stroke subject data for the single target task in Figure
8A.  All data sets were fit using a three-parameter exponen-
tial decay given in Equation 5, and used for subsequent anal-
ysis.

The population vector model data closely approximated the
observed data.  The stroke severity-dependent spreading is
even more pronounced in the simulation due to the greater
number of  virtual subjects.  Unimpaired subjects received
approximately a single RMS value, while the most impaired
subjects varied in their RMS values.   However, the simula-
tion consistently predicted lower RMS values for all subjects
from the most severely impaired to the unimpaired in both
trials.  Stroke subjects with a Chedoke score of  7 during the
multiple target task received a mean RMS value of  around
20 degrees while their virtual counterparts only scored
about 2.  Unimpaired subject RMS scores from the single
target task shown in Figure 8 likewise have similar values.
The simulator systematically underestimates the total
amount of  reaching variability. 

The simulation was designed to account for a particular
amount of  variation attributable to the noisy nature of  a
neuron’s mean firing rate.  Nevertheless, the stroke subjects,
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Figure 6
Histograms of single target clinical trial. The mean desired direc-
tion is set equal to zero degrees in all cases.

Figure 7
Plots of desired directions versus impaired arm initial movement
directions.

RMS(x) = A + Be-x/C (5)



particularly the unaffected sub-
jects, displayed a far greater
amount of  variability than could
be accounted for by their virtual
counterparts.  In vivo, there are
several additional sources of
noise downstream of  the motor
cortex.  The signal must filter
down the nervous system to
activate the muscles, and all
could introduce the increased
variability to the system.  The
simulator does not account for
any downstream noise and there-
fore generates much smaller
RMS values.  We were able to
reincorporate the downstream
noise using one assumption.  In
unimpaired individuals, the dis-
crepancy between the predicted
RMS value and the measured
RMS values is attributed to
downstream noise. This assump-
tion is incorporated into
Equation 6.

KRMS is the amount of  downstream noise as established by
the difference between unimpaired stroke subject and virtu-
al subject RMS values.  From Equation 6, one can deter-
mine Chedoke as a function of  Stroke Severity for each
trial.  Figure 10 depicts the two curves (red - Single Target
Trial, blue - Multiple Target Trial).  The overlap between the

two curves suggests that the adapted population vector
model adequately captures the relationship between stroke
severity and directional error.  In particular, using two dif-
ferent sets of  stroke subjects with two different protocols,
the model predicted similar relationships between stroke
severity and Chedoke score. 

Discussion and Conclusion

Neural network models such as the population vector
model have provided insight to how the brain controls high
level parameters, such as the hand trajectory, through the
interaction of  individual neurons.  The present results
demonstrate that by incorporating random cell death to
simulate strokes, the population vector model predicts clin-
ically observed patterns of  reaching impairment. 

In this instance, the characteristic initial movement direc-
tion errors commonly exhibited by stroke patients are
shown as likely having their roots in damage to one partic-
ular region of  the motor cortex.  The computer simulations
accounts for trends in both magnitude and variation of
these initial movement direction errors as a function of  the
stroke severity.  Perhaps most important, data obtained
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Figure 8
Single target RMS versus impairment level.  Note: The red line represents a best fit curve.

Figure 9
Multiple target RMS versus impairment level.  Note: The red line represents a best-fit curve.

RMS(Chedoke) = RMS(Stroke Severity) + KRMS

Figure 10
Chedoke vs. Stroke Severity;  red: single target regression,  blue:
multiple target regression.

(6)



from the computer simulations were useful in establishing a
possible link between the Chedoke clinical evaluation and
the fraction of  cell death experienced in the motor cortex. 

As more research is conducted using the population vector,
new and more powerful models are being developed
(Amirikian and Georgopulos, 2000).  This adaptation of  the
population vector uses the fundamental and most widely
accepted directional tuning equation (Equation 1).  New
evidence suggests the population vector codes for more
than just hand direction. Some researchers believe the mag-
nitude of  the population vector is a representation of  the
hand velocity (Georgopulos et al., 1982).  Experiments on
these more controversial models would yield more empiri-
cally measurable parameters and lead to more conclusive
results.  Understanding the operating structure of  cortical
networks is essential to diagnosing the obstructions impair-
ing natural function following cerebral traumas.  Ultimately,
knowledge acquired from such studies will serve to better
direct patient recovery and rehabilitation.

Appendix

Given a uniformly distributed spherical virtual cortex, and
any arbitrarily desired direction vector, Equations 1 and 2
can be combined to yield the magnitude of  every vector in
that cortex.   Directional tuning (Equation 1) implies each
vector magnitude is a function of  the angle between the
desired direction and the vector’s preferred direction.
Equation 2 then solves for the angle between these two vec-
tors.  The net activity of  the entire cortex is calculated in a
vector sum using the equations given below. 

X, Y, Z are the Cartesian sum of  the N total vector com-
ponents.  They can be translated back into polar coordinates
using Equations A-4 and A-5.  Only the Θ direction was
useful for data analysis .

The Θ direction can be directly compared to the desired θ
for any deviation.   Variation in the Θ was calculated using
Equation A-4 as well as combining Equation 3 and substi-
tuting it in Equation 4 from the text.  The final solution is
given below (Equation 6):
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