
9/25/23, 1:48 PM UCI Undergraduate Research Journal

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html 1/2

U-Tee Cheah

Author

U-Tee "Benjamin" Cheah began his research experience by casually
approaching his faculty mentor. His project focused on enhancing
graphics performance via a novel processor. Ben's most memorable
experience occurred when, after much labor, his portion of the
project worked. In the future, Ben hopes to attend business or
engineering graduate school. He advises students to establish a
productive dialogue with their professors in order to facilitate their
research.

Abstract

Dynamically reconfigurable microprocessor design is an intriguing prospect for the
microprocessors of the future. Dynamic reconfiguration means that the microprocessor can
reconfigure itself (the datapath) during execution of a program to optimize its performance,
rather than having a pre-determined datapath. The MorphoSys project involves designing a
dynamically reconfigurable microprocessor geared specifically toward image processing
applications and determining if the trade-off in time, cost, and silicon area result in an overall
better microprocessor.
 The microprocessor will include a Tiny Reduced Instruction Set Computer (RISC) processor
to implement normal processor functions, and an array of Reconfigurable Cells (RCs), which
will implement most image processing applications more efficiently than the general purpose
processor. The design also includes a Frame Buffer (FB) to store whole frames of images for
use by the RCs, and a Direct Memory Access (DMA) controller to provide the FB faster access
to memory.

Faculty Mentor

The MorphoSys project is targeted for the design of a new generation of microprocessors that
will enable the emerging technologies such as: smart missiles, wireless audio/video
communicators, autonomous vehicles, and many other technologies planned for the beginning
of the next millennium to come to fruition. The Reconfigurable Computing Laboratory of UCI is
one of the selected groups in the nation to work on a new paradigm for developing “soft”
hardware computer technologies. The notion of “soft” hardware refers to the reconfigurability
of the hardware, which is different from current microprocessors. Reconfigurable hardware

mailto:utee@uci.edu

9/25/23, 1:48 PM UCI Undergraduate Research Journal

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html 2/2

Nader Bagherzadeh
School of Engineering

systems are more flexible allowing the system to adjust its hardware
resources to accommodate the needs of the user. The UCI group is
working on a new microchip called M1 that implements the ideas
developed for the MorphoSys project.

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

Copyright � 1998 by the Regents of the University of California. All rights reserved.

mailto:nader@uci.edu
http://www.eng.uci.edu/
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 2

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html 1/2

 Introduction

With the advent of the Multimedia Age, the
system requirements of programs have
increased dramatically. The complexities of
these applications require that processors be
powerful, yet flexible enough to
accommodate various classes of applications
efficiently. Recently, various reconfigurable
processors have been considered for
satisfying these requirements.
Reconfigurable computing represents a
median between general purpose
processors, which are capable of running
different applications at the cost of increased
execution time, as well as for Application-
Specific Integrated Circuits (ASICs), which
are processors only suitable for running
certain types of applications but with much
faster implementations. The software
programmer or the compiler of a
reconfigurable processor should be capable
of recognizing the configuration that is best
suited for the program (or portion of) in
question and ensuring that the processor is
set to that configuration.

Traditional reconfigurable processors are
statically reconfigurable, which means that
the processor is configured at the start of
program execution and remains unchanged
for the duration of the program. In order to
reconfigure a statically reconfigurable
processor, program execution would have to
be halted while the reconfiguration is in
progress, slowing down the execution of the
program. Dynamically reconfigurable
processors, on the other hand, allow
reconfiguration and execution to proceed at
the same time.

The MorphoSys project proposes to design a
unique dynamically reconfigurable computer
architecture geared toward increasing
performance of image processing
applications. The main components of the
architecture (Figures 1 and 2) are the Tiny
Reduced Instruction Set Computer (RISC)
processor, Reconfigurable Cell (RC) Array,
Context Memory, Frame Buffer (FB), Direct
Memory Access (DMA) Controller, and main
memory (i.e. DRAM, SRAM or RAMBUS).

Figure 2
MorphoSys system interface

Several other components (not shown)
complete the architecture: secondary
storage (i.e. hard drive) and the external
interface of the architecture (i.e. to the input
and output ports). Tiny RISC is a general
purpose processor that handles all
instructions not related specifically to image
processing. The RC Array is the
dynamically reconfigurable co-processor
that handles most of the image processing
for MorphoSys. The Context Memory
stores configurations (called contexts) for
the RC Array; the FB and DMA Controller
act as the interface between the RC Array
and the other components of MorphoSys.

At the time of this writing, the Tiny RISC
processor, DMA Controller, and FB have
been modeled in behavioral VHDL code; the
VLSI design stage of these components has
begun. The VLSI design of the RC Array is
complete.

Instruction set of the MorphoSys
Architecture

The current MorphoSys instruction set
consists of 44 Tiny RISC instructions
(including newly-added Branch If Greater
Than, Branch If Less Than, and Branch If
Equal To) and 12 instructions for the
operation of the RC Array, FB and DMA
Controller.

Components of the MorphoSys
Architecture

Frame Buffer:
The FB is a fast memory buffer used to
store portions of frames of data (in image
processing applications, each image is
called a frame). It is the buffer between the
DMA Controller and RC Array. The DMA
Controller has a 64-bit data bus connection
to the FB. The same bus is used for

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure2.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 2

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html 2/2

Figure 1
The MorphoSys top-level block diagram

reading and writing data to and from the FB,
and therefore the DMA Controller may not
read and write at same time. The RC Array
has two 64-bit

Page 2

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 3

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html 1/2

buses. One is a read-only bus; the other is a
read-write bus. The FB has to send enough
data per cycle to a whole row or column of
the RC Array. Since there are eight RCs,
each needing two 8-bit operands, a total of
128 bits (8 RCs * 2 operands/RC * 8
bits/operand = 128 bits) is necessary, hence
the two 64-bit read buses. One 64-bit bus is
needed to write data back to the FB from the
RC Array because each RC produces an 8-
bit output (8 RCs * 1 output/RC * 8
bits/output = 64 bits). Since one of the data
buses between the RC Array and the FB is
used for both reading and writing, a read and
write between these two modules may not
occur at the same time. However, the DMA
Controller and RC Array buses are
independent of each other and may each
read or write at will, with the constraint
presented below.

The FB is divided into two separate sets
(memory buffers). This configuration allows
the DMA Controller to access one set while
the RC Array is accessing the other. Each
set may be accessed by either the DMA
Controller or by the RC Array, but not by both
simultaneously. Each set is further divided
into two banks (Figure 3), each 64 bits wide.
The DMA Controller accesses one bank at a
time, while the RC Array accesses both
banks within the same set at the same time.
Thus, the DMA Controller must deliver data
to the FB at a rate at least twice as fast as
the rate the RC Array reads it. Fortunately,
this stipulation does not degrade the
performance of the RC Array because many
typical applications require the RC Array to
perform several operations on the same set
of data before the desired result is obtained
(the DMA can fill a set of the FB with data
before the RC Array needs another set of
data).

Figure 3
FB Internal Block Diagram

Direct Memory Access Controller:
The DMA Controller acts as the interface
between the main memory of the processor
and the FB and RC Array modules. The
data bus between the DMA Controller and
the FB is a 64-bit read-write bus, while the
data bus between the DMA Controller and
the RC Array is 32 bits wide (Figure 2).
Since the data bus to and from memory is
32 bits wide, the DMA Controller needs two
cycles to assemble 64 bits of data from the
memory for the FB, and one cycle to
assemble the 32-bit data for the RC Array.

The DMA Controller has three main
components: the Data Packing Register, the
Address Generator Unit, and the State
Controller. The Data Packing Register
assembles the 64 bits of data for the FB.
The Address Generator Unit generates and
tracks addresses for the memory, FB, and
RC Array. The State Controller receives
information from the Tiny RISC processor
and determines the following sequence of
data transfers to and from the FB and RC
Array. The amount of data transferred is
specified by the information from Tiny RISC.

Figure 4
RC Array - 8x8 array of RCs

Reconfigurable Cell Array:
The RC Array is a Single-Instruction
Multiple-Data (SIMD) multiprocessor. It
consists of an 8x8 array (Figure 4) of
processing units (called RCs). The array is
row or column reconfigurable, meaning that
a whole row or column can be reconfigured
at the same time, with the same context
across all eight cells. With the same
context, each row or column executes the
same instruction on different data, hence
making each row or column a SIMD
multiprocessor. Each RC stores a copy of
its current context in its Context Register,
which is internal to each RC and separate
from the Context Memory. Capability to
reconfigure single RCs is present. The
power of the RC Array lies in the fact that,
depending on a specific application's needs,

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure4.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 3

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html 2/2

it can be configured to be a row or a column
of eight multi

Page 3

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 4

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html 1/2

processors, with each multiprocessor
consisting of eight RCs (it could be a 64
processor); the connections between
processors have been designed to allow fast,
efficient transmission of data.

Figure 5
RC internal structure

The internal structure of an RC is shown in
Figure 5. Each RC is capable of normal
arithmetic (i.e. ADD, SUBTRACT), logic (i.e.
AND, XOR, SHIFT, SET_ IF_EQUAL, etc.),
multiply, and multiply-accumulate operations.
The input and output data bus is 8 bits wide,
but internally, the bus is widened to 16 bits to
obtain higher precision in the final result (the
RC Array takes several instructions to
produce the final result, and the internal
datapaths are 16-bit to save intermediate
results with 16-bit precision; the output
register is 32 bits to save the output of
multiply and multiply-accumulate
operations�two 16-bit operands produce a
maximum of 32 bits from a multiply). Only
the lower 8 bits of the output register are
taken to be the final results which are written
out on the data bus (the upper 24 bits are
discarded because only the lower 8 bits
provide the precision necessary for the
applications studied�the internal datapaths
and the output register are larger to maintain
the precision of the intermediate results, as
previously mentioned)

Figure 6
RC Array data and context buses

Figure 6 shows the data and context
buses. Data is broadcast to either an entire
row or an entire column, and supply both
the IA and IB inputs for each RC. Contexts
are saved in the Context Memory, which is a
16x16 array of 32-bit registers. With that
size, the Context Memory can store up to
16 different configurations for each of the
eight rows and each of the eight columns.
The context formats are shown in Figure 7.

Figure 7
RC Array Context Formats

For purposes of visualizing the connectivity
among RCs, the RC Array has been divided
into four quadrants (each quadrant is a 4x4
array of RCs). The various internal
connections between the RCs are shown in
Figures 8 through 13. The first type of
connectivity is North-South-East- West,
where each RC is connected to its nearest
four neighbors (Figure 8). The second type
is connectivity within a quadrant. Each RC
is fully connected to every other RC in the
same quadrant row

Figure 8
RC Array North-South-East-West
connectivity

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure7.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure7.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure8.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure8.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 4

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html 2/2

Page 4

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 5

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html 1/2

Figure 9
RC Array NSEW and full quadrant
row/column connectivity

or quadrant column (Figures 9 and 10). The
data from the leftmost RC in the quadrant
row is called Left A (LA), the data from the
rightmost RC in the quadrant row is called
Right (R), and the data from the remaining-

Figure 10
RC Array Port A connectivity

RC in the quadrant row is called Middle (M).
The data from the topmost RC in the
quadrant column is called Top (T), the data
from the bottommost RC in the

Figure 11
RC Array Port B connectivity

quadrant column is called Bottom (B), and
the data from the remaining RC in the
quadrant column is called Center (C). Note
that the names do not reflect the direction
from which the data came (i.e. Left could
come from the RC to the right of the RC in
question if the RC in question is the leftmost
RC in its quadrant row; similarly, Top could
come from an RC below). These data are
only available for Port A (operand A). Port B
(operand B) utilizes only the North, South,
and West connections, which in Figure 10
are called Up (U), Down (D), and Left B
(LB). This was determined after studying
the applications of interest and discovering
that the North and South inputs are
necessary; the East and West are not. Due
to the lack of bits in the context, the number
of inputs to the Port B input MUX is limited
by necessity�only East or West could be
included, and West was chosen arbitrarily.

Figure 12
RC Array Express Lane

The third type of connectivity are the
"Express Lanes," where every RC is a row
or column and is connected to every RC in
the same row or column in an adjacent
quadrant (Figures 12 and 13). Using the
Express

Figure 13
RC Array inter-quadrant Express Lanes
connectivity

Page 5

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure9.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure9.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure10.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure10.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure11.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure11.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure12.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure12.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure13.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure13.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 5

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html 2/2

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 6

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html 1/2

Lanes, RCs in adjacent quadrants can send
data (denoted by E for Express) to each
other without having to go through other
RCs, thus saving time. While quadrants
which are diagonally across from each other
need to use an intermediate quadrant to
transfer data between them, it has been
determined that this does not occur often in
the applications of interest. Hence the
resulting performance degradation should not
be significant. Figure 5 shows the two ports
of an RC: Port A has the inputs IA (Immediate
value for Port A, from Frame Buffer), LA (Left,
Port A), M (Middle), R (Right), T (Top), C
(Center), B (Bottom), XQ (Cross-quadrant),
FB (Feedback), and R0 to R3 (data from the
4-deep Register File of the RC); Port B has
the inputs IB (Immediate value for Port B,
from FB), U (Up), D (Down), LB (Left, Port
B), and R0 to R3 (data from the 4-deep
Register File of the RC). XQ is data that
comes from the cell in the next quadrant
directly across from the RC in question. The
Feedback input to Port A is the input selected
for Port A in the previous cycle. The Register
File holds up to four previous outputs of the
RC (R0 to R3) and can supply them as inputs
to the RC. Note that IA and IB are different
data (coming on two separate buses from the
FB).

Figure 14
Tiny RISC pipeline stages 1 and 2

Tiny RISC processor:
Tiny RISC is a 4-stage pipelined processor
(Figures 14 and 15), designed at the
University of California, Irvine by Christopher
Christensen as a powerful 16-bit RISC
microprocessor. For the MorphoSys project,
the design was modeled in behavioral VHDL
and the data and address bus sizes were
increased to 32 bits. Tiny RISC has four
important registers in addition to the Register
File and the Special Register File. The first
is the Program Counter register, which
contains the address of the program
execution point. The other three are pipeline
registers, which provide the latched interface
between each pipeline stage. All processor

rising edge of the global clock. The first
pipeline register is latched when the
instruction acknowledge signal is lowered
by the instruction cache controller (which
indicates that the instruction is ready).

Figure 15
Tiny RISC pipeline stages 3 and 4

The first stage is the Instruction-Fetch
stage, where the 32-bit instruction is fetched
from the instruction cache. The next stage,
the Instruction-Decode stage, includes the
Register File and the Special Register File.
The Register File consists of sixteen 32-bit
registers designed to hold regular data,
while the Special Register File has five 32-
bit registers designed to hold certain
important information relating to interrupts
and interrupt returns. Table 1 describes the
purpose of each Special Register. The
Execution stage is the third pipeline stage,
and consists of the Arithmetic Logic Unit
(ALU) and the interface to and from the data
memory. The Execution stage also includes
the Branch Unit, which contains all the logic
necessary for determining the next PC
value (which is normally incremented,
unless the instruction requires a Jump). The
final stage is the Writeback stage, where the
output from the ALU or the data requested
from memory is written back to the Register
File. If the instruction is MTS (Move To
Special Register), the data stored in the
Register File location specified is written
back to the Special Register specified. If
the instruction is MFS (Move From Special
Register), the opposite is done.

Due to its pipelined architecture, Tiny RISC
requires two forwarding units to avoid costly
delays due to Read After Write (RAW)
dependencies. This occurs because it
takes the processor two cycles after an
instruction has been decoded to write data
back to the Decode stage. The two
instructions immediately following the
instruction in question will need to obtain
the updated data (if they are reading from

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure14.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure14.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure15.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure15.html

9/25/23, 1:48 PM Undergraduate Research Journal Page 6

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html 2/2

registers, except the first pipeline register,
are synchronous to the

the register that is being written back to).
One forwarding unit appears in the

Page 6

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

9/25/23, 1:49 PM Undergraduate Research Journal Page 7

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html 1/2

Table 1
Tiny RISC Special Register File

Decode stage, where it forwards the updated
data to the second instruction after the
instruction in question. The other forwarding
unit is in the Execution stage, where it
forwards the updated data to the instruction
immediately following the instruction in
question.

Application Programs

The purpose of the MorphoSys project is to
increase the performance of image
processing applications with its unique RC
Array-Tiny RISC design. The RC Array
dramatically speeds up compute-intensive
array-type operations, while the Tiny RISC
handles routine operations efficiently. Among
the applications studied are Auto-matic
Target Recognition (ATR), Motion Estimation
(ME), and Discrete Cosine Transform (DCT).

It was found that while MorphoSys is not as
efficient as ASICs (i.e. for ME, it takes almost
twice as many cycles as an ASIC designed
especially for ME), MorphoSys performs
much better than a non-reconfigurable
processor, like the Intel MMX, which was
designed to speed up multimedia (image,
audio, etc.) processing applications. The
Intel MMX processor uses approximately 28-
times the number of cycles needed by
MorphoSys to perform full search block
matching (for ME), and 10-times the number
of cycles to do DCT.

Conclusion

The MorphoSys project has proven that a
dynamically reconfigurable processor is
capable of vast improvements over a non-
reconfigurable processor in terms of speed.
The future goals of the project include
integrating a reconfigurable memory array
into the processor, which will allow better
utilization of memory resources and greater
performance gains, and producing the
complete MorphoSys prototype processor
within two years. The first prototype,
without the reconfigurable memory array, is
due at the end of 1998.

Figure 16
Format of SREG(0)

Acknowledgements

My undergraduate research is supported by
the UC Irvine Presidential Undergraduate
Fellowship (PUF) and the Undergraduate
Research Opportunities Program. Thanks to
Professor Nader Bagherzadeh for taking me
on as an undergraduate researcher, to
Professor Eliseu Filho and Guangming Lu
for their invaluable help in my portion of the
project, and to Hartej Singh for his
willingness in explaining portions of the
project in which I am not involved. The
following other people have contributed to
the MorphoSys project and directly or
indirectly aided in the composition of this
paper: Professor Fadi Kurdahi, Professor
Tomas Lang, Robert Heaton, Ming-Hau
Lee, Maneesha Bhate, Matt Campbell,
Alexander Gascoigne, Nambao Van Le,
Robert Powell, Rei Shu, Lingling Sun,
Cesar Talledo, Eric Tan, Tom Truong, and
Tim Truong. My sincerest thanks to all of
you. Most importantly, I want to thank my
parents for supporting me through college,
and my grandmother for taking care of me.

Works Cited

Singh, Hartej, Ming-Hau Lee, Guangming
Lu, Fadi J. Kurdahi, Nader Bagherzadeh,
Tomas Lang, Robert Heaton, and Eliseu M.
C. Filho. "MorphoSys: An Integrated Re-
configurable Architecture." NATO
Symposium on System Concepts and
Integration. Monterey, CA. April 1998.

Page 7

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/table1.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/table1.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure16.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/figure16.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html

9/25/23, 1:49 PM Undergraduate Research Journal Page 7

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html 2/2

U-Tee Cheah - The MorphoSys Project: Dynamically Configurable... [1] [2] [3] [4] [5] [6] [7]

Back to Journal 1998 Index

https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/page01.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body2.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body3.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body4.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body5.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body6.html
https://archive.urop.uci.edu/journal/journal98/BenjaminCheah/Body7.html
https://archive.urop.uci.edu/journal/journal98/intropages.html

